中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-Modal Domain Adaptation Variational Auto-encoder for EEG-Based Emotion Recognition

文献类型:期刊论文

作者Wang, Yixin4,5,6; Qiu, Shuang4,5; Li, Dan1,4,5; Du, Changde4,5; Lu, Bao-Liang2; He, Huiguang3,4,5
刊名IEEE-CAA JOURNAL OF AUTOMATICA SINICA
出版日期2022-09-01
卷号9期号:9页码:1612-1626
关键词Cycle-consistency domain adaptation electroencephalograph (EEG) multi modality variational autoencoder
ISSN号2329-9266
DOI10.1109/JAS.2022.105515
通讯作者He, Huiguang(huiguang.he@ia.ac.cn)
英文摘要Traditional electroencephalograph (EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject, which restricts the application of the affective brain computer interface (BCI) in practice. We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples. To solve this problem, we propose a multi-modal domain adaptive variational autoencoder (MMDA-VAE) method, which learns shared cross-domain latent representations of the multi-modal data. Our method builds a multi-modal variational autoencoder (MVAE) to project the data of multiple modalities into a common space. Through adversarial learning and cycle-consistency regularization, our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge. Extensive experiments are conducted on two public datasets, SEED and SEED-IV, and the results show the superiority of our proposed method. Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data.
资助项目National Natural Science Foundation of China[61976209] ; National Natural Science Foundation of China[62020106015] ; National Natural Science Foundation of China[U21A20388] ; CAS International Collaboration Key Project[173211KYSB20190024] ; Strategic Priority Research Program of CAS[XDB32040000]
WOS研究方向Automation & Control Systems
语种英语
WOS记录号WOS:000844142700010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; CAS International Collaboration Key Project ; Strategic Priority Research Program of CAS
源URL[http://ir.ia.ac.cn/handle/173211/50053]  
专题类脑智能研究中心_神经计算及脑机交互
通讯作者He, Huiguang
作者单位1.Yantai Univ, Sch Math & Informat Sci, Yantai 264003, Peoples R China
2.Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
4.Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Beijing Inst Control & Elect Technol, Beijing 100038, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yixin,Qiu, Shuang,Li, Dan,et al. Multi-Modal Domain Adaptation Variational Auto-encoder for EEG-Based Emotion Recognition[J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA,2022,9(9):1612-1626.
APA Wang, Yixin,Qiu, Shuang,Li, Dan,Du, Changde,Lu, Bao-Liang,&He, Huiguang.(2022).Multi-Modal Domain Adaptation Variational Auto-encoder for EEG-Based Emotion Recognition.IEEE-CAA JOURNAL OF AUTOMATICA SINICA,9(9),1612-1626.
MLA Wang, Yixin,et al."Multi-Modal Domain Adaptation Variational Auto-encoder for EEG-Based Emotion Recognition".IEEE-CAA JOURNAL OF AUTOMATICA SINICA 9.9(2022):1612-1626.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。