Encoder-decoder deep learning network for simultaneous reconstruction of fluorescence yield and lifetime distributions
文献类型:期刊论文
作者 | Cheng, Jiaju5; Zhang, Peng3,4![]() ![]() ![]() ![]() |
刊名 | BIOMEDICAL OPTICS EXPRESS
![]() |
出版日期 | 2022-09-01 |
卷号 | 13期号:9页码:4693-4705 |
ISSN号 | 2156-7085 |
DOI | 10.1364/BOE.466349 |
通讯作者 | Luo, Jianwen(luo_jianwen@tsinghua.edu.cn) |
英文摘要 | A time-domain fluorescence molecular tomography in reflective geometry (TD-rFMT) has been proposed to circumvent the penetration limit and reconstruct fluorescence distribution within a 2.5-cm depth regardless of the object size. In this paper, an end-to-end encoder-decoder network is proposed to further enhance the reconstruction performance of TD-rFMT. The network reconstructs both the fluorescence yield and lifetime distributions directly from the time-resolved fluorescent signals. According to the properties of TD-rFMT, proper noise was added to the simulation training data and a customized loss function was adopted for self-supervised and supervised joint training. Simulations and phantom experiments demonstrate that the proposed network can significantly improve the spatial resolution, positioning accuracy, and accuracy of lifetime values.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement |
WOS关键词 | MOLECULAR TOMOGRAPHY ; MODEL |
资助项目 | National Natural Science Foundation of China[61871022] ; National Natural Science Foundation of China[61871251] ; National Natural Science Foundation of China[62027901] |
WOS研究方向 | Biochemistry & Molecular Biology ; Optics ; Radiology, Nuclear Medicine & Medical Imaging |
语种 | 英语 |
WOS记录号 | WOS:000863048100006 |
出版者 | Optica Publishing Group |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/50382] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Luo, Jianwen |
作者单位 | 1.Beijing Informat Sci & Technol Univ, Beijing Adv Informat & Ind Technol Res Inst, Beijing 100192, Peoples R China 2.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing 100191, Peoples R China 3.Chinese Acad Sci, CAS Key Lab Mol Imaging, Inst Automat, Beijing 100190, Peoples R China 4.Beijing Jiaotong Univ, Dept Biomed Engn, Sch Comp & Informat Technol, Beijing 100044, Peoples R China 5.Tsinghua Univ, Dept Biomed Engn, Sch Med, Beijing 100084, Peoples R China |
推荐引用方式 GB/T 7714 | Cheng, Jiaju,Zhang, Peng,Liu, Fei,et al. Encoder-decoder deep learning network for simultaneous reconstruction of fluorescence yield and lifetime distributions[J]. BIOMEDICAL OPTICS EXPRESS,2022,13(9):4693-4705. |
APA | Cheng, Jiaju.,Zhang, Peng.,Liu, Fei.,Liu, Jie.,Hui, Hui.,...&Luo, Jianwen.(2022).Encoder-decoder deep learning network for simultaneous reconstruction of fluorescence yield and lifetime distributions.BIOMEDICAL OPTICS EXPRESS,13(9),4693-4705. |
MLA | Cheng, Jiaju,et al."Encoder-decoder deep learning network for simultaneous reconstruction of fluorescence yield and lifetime distributions".BIOMEDICAL OPTICS EXPRESS 13.9(2022):4693-4705. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。