中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Improved Bright Band Identification Algorithm Based on GPM-DPR Ku-Band Reflectivity Profiles

文献类型:期刊论文

作者Zhu, Ziwei1,2; Qi, Youcun1,2; Zhao, Zhanfeng1,2
刊名IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
出版日期2022
卷号60页码:9
关键词Bright band (BB) identification dual-frequency precipitation radar (DPR) Global Precipitation Measurement mission (GPM) vertical profile of reflectivity (VPR)
ISSN号0196-2892
DOI10.1109/TGRS.2022.3208892
通讯作者Qi, Youcun(youcun.qi@igsnrr.ac.cn) ; Zhao, Zhanfeng(zhaozhanfeng@igsnrr.ac.cn)
英文摘要Bright band (BB) is a layer of enhanced radar reflectivity due to hydrometeor melting and coalescence. BB identification is of high importance in radar quantitative precipitation estimation (QPE) and other applications. The dual-frequency precipitation radar (DPR) onboard the core satellite of the Global Precipitation Measurement mission (GPM) enables new investigations of BB characteristics on a global scale. However, the GPM-DPR operational BB identification algorithm based on the vertical profile of reflectivity (VPR) from single-frequency (SF; Ku-band) or dual-frequency (DF; Ku- and Ka-band) observations still has room for improvement. In the current study, an improved GPM-DPR SF BB identification algorithm is presented based on the detection of inflection points within a given range in a VPR. The improved GPM-DPR SF BB identification algorithm decreases the overestimation (underestimation) error of the BB bottom (top) height identified by the GPM-DPR SF algorithm, from 322 m (-345 m) to 182 m (-211 m), compared to the identifications by the GPM-DPR DF algorithm. The GPM-DPR SF will misestimate the depth of the melting layer, and the reflectivity difference between BB bottom (top) and BB peak to about 1.5 (3.5) dB, which will lead to misunderstanding the vertical physical variation of the precipitation particles. The validation through beta(HV) derived from WSR-88D observations in the conterminous United States (CONUS) demonstrates that the GPM-DPR DF algorithm is of higher accuracy, and the improved GPM-DPR SF algorithm performs better than the GPM-DPR SF algorithm. The new algorithm will contribute to hydrometeor phase classification and the studies on BB characteristics.
WOS关键词RADAR QPE ERRORS ; MELTING-LAYER ; CLASSIFICATION ALGORITHM ; VERTICAL PROFILES ; PRECIPITATION ; ONBOARD ; RAIN
资助项目National Key Research and Development Project[2018YFC1507505] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA2006040101] ; Hundred Talent Program
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000866495000008
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Project ; Strategic Priority Research Program of Chinese Academy of Sciences ; Hundred Talent Program
源URL[http://ir.igsnrr.ac.cn/handle/311030/185605]  
专题中国科学院地理科学与资源研究所
通讯作者Qi, Youcun; Zhao, Zhanfeng
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Ziwei,Qi, Youcun,Zhao, Zhanfeng. An Improved Bright Band Identification Algorithm Based on GPM-DPR Ku-Band Reflectivity Profiles[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:9.
APA Zhu, Ziwei,Qi, Youcun,&Zhao, Zhanfeng.(2022).An Improved Bright Band Identification Algorithm Based on GPM-DPR Ku-Band Reflectivity Profiles.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,9.
MLA Zhu, Ziwei,et al."An Improved Bright Band Identification Algorithm Based on GPM-DPR Ku-Band Reflectivity Profiles".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):9.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。