Urban land surface temperature prediction using parallel STL-Bi-LSTM neural network
文献类型:期刊论文
作者 | Huo, Xing2; Cui, Guangpeng2; Ma, Lingling3; Tang, Bohui1; Tang, Ronglin4; Shao, Kun2; Wang, Xinhong3 |
刊名 | JOURNAL OF APPLIED REMOTE SENSING
![]() |
出版日期 | 2022-07-01 |
卷号 | 16期号:3页码:13 |
关键词 | temperature prediction time series seasonal and trend decomposition using loess long short-term memory |
DOI | 10.1117/1.JRS.16.034529 |
通讯作者 | Ma, Lingling(mall@aircas.ac.cn) |
英文摘要 | Accurate temperature prediction is of great significance to human life and social economy. A series of traditional methods and machine learning methods have been proposed to achieve temperature prediction, but it is still a challenging problem. We propose a temperature prediction model that combines seasonal and trend decomposition using loess (STL) and the bidirectional long short-term memory (Bi-LSTM) network to achieve high-accuracy prediction of the daily average temperature of China cities. The proposed model decomposes the temperature data using STL into trend component, seasonal component, and remainder component. Decomposition components and the original temperature data are input into the two-layer Bi-LSTM to learn the features of the temperature data, and the sum of prediction of three components and the original temperature data prediction result are added using learnable weights as the prediction result. The experimental results show that the average root mean square error and mean absolute error of the proposed model on the testing data are 0.11 and 0.09, respectively, which are lower than 0.35 and 0.27 of STL-LSTM, 2.73 and 2.07 of EMD-LSTM, 0.39 and 0.15 of STL-SVM, achieving a higher precision temperature prediction. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. |
WOS关键词 | IMPACT ; HEAT |
资助项目 | National Natural Science Foundation of China[61872407] |
WOS研究方向 | Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000867557000031 |
出版者 | SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/186402] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Ma, Lingling |
作者单位 | 1.Kunming Univ Sci & Technol, Kunming, Yunnan, Peoples R China 2.Hefei Univ Technol, Hefei, Peoples R China 3.Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Quantitat Remote Sensing Informat Technol, Beijing, Peoples R China 4.Chinese Acad Sc, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Huo, Xing,Cui, Guangpeng,Ma, Lingling,et al. Urban land surface temperature prediction using parallel STL-Bi-LSTM neural network[J]. JOURNAL OF APPLIED REMOTE SENSING,2022,16(3):13. |
APA | Huo, Xing.,Cui, Guangpeng.,Ma, Lingling.,Tang, Bohui.,Tang, Ronglin.,...&Wang, Xinhong.(2022).Urban land surface temperature prediction using parallel STL-Bi-LSTM neural network.JOURNAL OF APPLIED REMOTE SENSING,16(3),13. |
MLA | Huo, Xing,et al."Urban land surface temperature prediction using parallel STL-Bi-LSTM neural network".JOURNAL OF APPLIED REMOTE SENSING 16.3(2022):13. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。