中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Estimation of Heavy-Metal Contamination in Soil Using Remote Sensing Spectroscopy and a Statistical Approach

文献类型:期刊论文

作者Liu, Kai5; Zhao, Dong4; Fang, Jun-yong4; Zhang, Xia4; Zhang, Qing-yun3; Li, Xue-ke1,2
刊名JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
出版日期2017-10-01
卷号45期号:5页码:805-813
关键词Heavy-metal contamination Remote sensing spectroscopy Statistical approach
ISSN号0255-660X
DOI10.1007/s12524-016-0648-4
通讯作者Zhao, Dong(zhaodong@radi.ac.cn)
英文摘要Heavy-metal-contaminated soil is a critical environmental issue in suburban regions. This paper focuses on utilizing field spectroscopy to predict the heavy metal contents in soil for two suburban areas in the Jiangning District (JN) and the Baguazhou District (BGZ) in China. The relationship between the surface soil heavy metal contents and spectral features was investigated through statistical modeling. Spectral features of several spectral techniques, including reflectance spectra (RF), the logarithm of reciprocal spectra (LG) and continuum-removal spectra (CR), were employed to establish and calibrate models regarding to Cd, Hg and Pb contents. The optimal bands for each spectral feature were first selected based on the spectra of soil samples with artificially added heavy metals using stepwise multiple linear regressions. With the chosen bands, the average predictive accuracies of the cross-validation, using the coefficient of determination R-2, for estimating the heavy metal contents in the two field regions were 0.816, 0.796 and 0.652 for Cd; 0.787, 0.888 and 0.832 for Pb; and 0.906 and 0.867 for Hg based on partial least squares regression. Results show that better prediction accuracies were obtained for Cd and Hg, while the poorest prediction was obtained for Pb. Moreover, the performances of the LG and CR models were better than that of the RF model for Pb and Hg, indicating that LG and CR can provide alternative features in determining heavy metal contents. Overall, it's concluded that Cd, Hg and Pb contents can be assessed using remote-sensing spectroscopy with reasonable accuracy, especially when combined with library and field-collected spectra.
WOS关键词REFLECTANCE SPECTROSCOPY ; COMBINED GEOCHEMISTRY ; FIELD SPECTROSCOPY ; MINING AREA ; REMEDIATION ; ELEMENTS ; REMOVAL ; CHINA
资助项目Natural Science Foundation of China[41001214]
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing
语种英语
WOS记录号WOS:000413689600008
出版者SPRINGER
资助机构Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/61210]  
专题中国科学院地理科学与资源研究所
通讯作者Zhao, Dong
作者单位1.Univ Connecticut, Ctr Environm Sci & Engn, Mansfield, CT 06269 USA
2.Univ Connecticut, Dept Geog, Mansfield, CT 06269 USA
3.Shandong Univ Sci & Technol, Geomat Coll, Qingdao 266590, Peoples R China
4.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, 3 Datun Rd, Beijing 100101, Peoples R China
5.Chinese Acad Sci, Inst Geog Sci & Nat Resources, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Liu, Kai,Zhao, Dong,Fang, Jun-yong,et al. Estimation of Heavy-Metal Contamination in Soil Using Remote Sensing Spectroscopy and a Statistical Approach[J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING,2017,45(5):805-813.
APA Liu, Kai,Zhao, Dong,Fang, Jun-yong,Zhang, Xia,Zhang, Qing-yun,&Li, Xue-ke.(2017).Estimation of Heavy-Metal Contamination in Soil Using Remote Sensing Spectroscopy and a Statistical Approach.JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING,45(5),805-813.
MLA Liu, Kai,et al."Estimation of Heavy-Metal Contamination in Soil Using Remote Sensing Spectroscopy and a Statistical Approach".JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING 45.5(2017):805-813.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。