A comprehensive scheme for tattoo text detection
文献类型:期刊论文
作者 | Banerjee, Ayan5; Shivakumara, Palaiahnakote4; Pal, Umapada5; Raghavendra, Ramachandra3; Liu, Cheng-Lin1,2![]() |
刊名 | PATTERN RECOGNITION LETTERS
![]() |
出版日期 | 2022-11-01 |
卷号 | 163页码:168-179 |
ISSN号 | 0167-8655 |
DOI | 10.1016/j.patrec.2022.10.007 |
通讯作者 | Raghavendra, Ramachandra(raghavendra.ramachandra@ntnu.no) |
英文摘要 | Tattoo text detection provides a vital clue for person and crime identification. Due to the freestyle and unconstrained nature of handwritten tattoo text over skin regions, accurate tattoo text detection is very challenging. This paper proposes a comprehensive scheme for tattoo text detection which comprises (a) adaptive Deformable Convolutional Neural Network (DCNN) for skin region detection to reduce text detection complexity (b) a Decoupled Gradient Text Detector (DGTD) for tattoo text detection from skin region (c) a Deep Q-Network (DQN) to refine the bounding boxes detected by DGTD, and (d) a Term -Frequency-Inverse-Document-Frequency (TF-IDF) model to group the words into text lines based on se-mantic information to fix the bounding box for the line. To test the effectiveness, the proposed method is evaluated on different datasets, namely, (i) a newly developed tattoo text dataset, (ii) benchmark bib number dataset of the marathon, and (iii) person re-identification dataset. The proposed method achieves 91.2, 87.5, and 88.8 F-scores from these three respective datasets. To demonstrate its superior performance, the text detection module (without skin detection) is also compared with state-of-the-art scene text detection methods on benchmark datasets, namely, ICDAR 2019 ArT, Total-Text, and DAST1500 and the proposed method achieves 90.3, 88.5 and 89.8 F-score from these respective datasets. (c) 2022 The Authors. Published by Elsevier B.V. |
WOS关键词 | RECOGNITION |
资助项目 | Ministry of Higher Education of Malaysia[FRGS/1/2020/ICT02/UM/02/4] ; TIH, ISI Kolkata |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000877215000013 |
出版者 | ELSEVIER |
资助机构 | Ministry of Higher Education of Malaysia ; TIH, ISI Kolkata |
源URL | [http://ir.ia.ac.cn/handle/173211/50563] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
通讯作者 | Raghavendra, Ramachandra |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China 3.NTNU, Fac Informat Technol & Elect Engn, IIK, Oslo, Norway 4.Univ Malaya, Dept Comp Syst & Technol, Kula Lumpur, Malaysia 5.Indian Stat Inst, Comp Vis & Pattern Recognit Unit, Kolkata, India |
推荐引用方式 GB/T 7714 | Banerjee, Ayan,Shivakumara, Palaiahnakote,Pal, Umapada,et al. A comprehensive scheme for tattoo text detection[J]. PATTERN RECOGNITION LETTERS,2022,163:168-179. |
APA | Banerjee, Ayan,Shivakumara, Palaiahnakote,Pal, Umapada,Raghavendra, Ramachandra,&Liu, Cheng-Lin.(2022).A comprehensive scheme for tattoo text detection.PATTERN RECOGNITION LETTERS,163,168-179. |
MLA | Banerjee, Ayan,et al."A comprehensive scheme for tattoo text detection".PATTERN RECOGNITION LETTERS 163(2022):168-179. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。