A Parallel Teacher for Synthetic-to-Real Domain Adaptation of Traffic Object Detection
文献类型:期刊论文
作者 | Wang, Jiangong5,6![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
![]() |
出版日期 | 2022-09-01 |
卷号 | 7期号:3页码:441-455 |
关键词 | Object detection Feature extraction Data models Training Knowledge engineering Detectors Computational modeling Computer vision Unsupervised Domain Adaptation Teacher-student learning Traffic object detection |
ISSN号 | 2379-8858 |
DOI | 10.1109/TIV.2022.3197818 |
通讯作者 | Wang, Xiao(x.wang@ia.ac.cn) |
英文摘要 | Large-scale synthetic traffic image datasets have been widely used to make compensate for the insufficient data in real world. However, the mismatch in domain distribution between synthetic datasets and real datasets hinders the application of the synthetic dataset in the actual vision system of intelligent vehicles. In this paper, we propose a novel synthetic-to-real domain adaptation method to settle the mismatch domain distribution from two aspects, i.e., data level and knowledge level. On the data level, a Style-Content Discriminated Data Recombination (SCD-DR) module is proposed, which decouples the style from content and recombines style and content from different domains to generate a hybrid domain as a transition between synthetic and real domains. On the knowledge level, a novel Iterative Cross-Domain Knowledge Transferring (ICD-KT) module including source knowledge learning, knowledge transferring and knowledge refining is designed, which achieves not only effective domain-invariant feature extraction, but also transfers the knowledge from labeled synthetic images to unlabeled actual images. Comprehensive experiments on public virtual and real dataset pairs demonstrate the effectiveness of our proposed synthetic-to-real domain adaptation approach in object detection of traffic scenes. |
WOS关键词 | INTELLIGENT VEHICLES ; TRACKING ; VISION ; NETWORKS ; SYSTEMS ; IMAGES |
资助项目 | Key-Area Research and Development Program of Guangdong Province[2020B090921003] ; National Natural Science Foundation of China[U1811463] ; Key Research and Development Program 2020 of Guangzhou[202007050002] ; Shenzhen Science and Technology Program[RCBS20200714114920272] |
WOS研究方向 | Computer Science ; Engineering ; Transportation |
语种 | 英语 |
WOS记录号 | WOS:000873905600008 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Key-Area Research and Development Program of Guangdong Province ; National Natural Science Foundation of China ; Key Research and Development Program 2020 of Guangzhou ; Shenzhen Science and Technology Program |
源URL | [http://ir.ia.ac.cn/handle/173211/50544] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Wang, Xiao |
作者单位 | 1.Anhui Univ, Sch Artificial Intelligence, Hefei 230039, Peoples R China 2.North Automat Controltechnol Inst, Taiyuan 030006, Peoples R China 3.Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Shenzhen 518107, Peoples R China 4.Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China 5.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 6.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Jiangong,Shen, Tianyu,Tian, Yonglin,et al. A Parallel Teacher for Synthetic-to-Real Domain Adaptation of Traffic Object Detection[J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,2022,7(3):441-455. |
APA | Wang, Jiangong.,Shen, Tianyu.,Tian, Yonglin.,Wang, Yutong.,Gou, Chao.,...&Sun, Changyin.(2022).A Parallel Teacher for Synthetic-to-Real Domain Adaptation of Traffic Object Detection.IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,7(3),441-455. |
MLA | Wang, Jiangong,et al."A Parallel Teacher for Synthetic-to-Real Domain Adaptation of Traffic Object Detection".IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 7.3(2022):441-455. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。