中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Building a top-down method based on machine learning for evaluating energy intensity at a fine scale

文献类型:期刊论文

作者Guo, Jinyu2,3; Ma, Jinji2,3; Li, Zhengqiang4; Hong, Jin1
刊名ENERGY
出版日期2022-09-15
卷号255
关键词Energy efficiency Energy intensity Machine learning Multi-source satellite data Top-down Fine-scale
ISSN号0360-5442
DOI10.1016/j.energy.2022.124505
通讯作者Ma, Jinji(jinjima@ahnu.edu.cn)
英文摘要Energy intensity is an important representative of energy efficiency. Currently, most countries lack finescale energy intensity data, taking China as an example, it only published provincial energy intensity data. However, the published large-scale energy intensity cannot support the formulation of local policies. What's more, the research work about the evaluation of fine-scale energy intensity is rare. To solve this problem, a "top-down" method based on machine learning is proposed to evaluate the fine-scale energy intensity. Appropriate features were extracted from multi-source satellite data, then the performances of multiple machine learning models were compared. It is found that deep neural network reaches the highest level among these models. Therefore, it was selected to estimate city-scale energy intensity from the year of 2001-2017. It turns out that the energy efficiency of southeast cities is higher than that of northwest cities in China, and most cities are developing towards the direction of improving energy efficiency. Among all cities, the central ones are the fastest to improve energy efficiency. However, the energy efficiency of a few cities is found to reduce during this period. The proposed method can also be used in other countries to help governments save energy and reduce emissions. (c) 2022 Elsevier Ltd. All rights reserved.
WOS关键词INDUSTRIAL-STRUCTURE
资助项目National Natural Science Foundation of China[41671352] ; top notch university[gxbjZD06] ; K. C. Wong Education Foundation[GJTD-2018-15]
WOS研究方向Thermodynamics ; Energy & Fuels
语种英语
WOS记录号WOS:000862250400009
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Natural Science Foundation of China ; top notch university ; K. C. Wong Education Foundation
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/129117]  
专题中国科学院合肥物质科学研究院
通讯作者Ma, Jinji
作者单位1.Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Opt Calibrat & Characterizat, Hefei 230031, Peoples R China
2.Anhui Normal Univ, Sch Geog & Tourism, Wuhu 241003, Peoples R China
3.Engn Technol Res Ctr Resources Environm & GIS, Wuhu 241003, Anhui, Peoples R China
4.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Environm Protect Key Lab Satellite Remote Se, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Guo, Jinyu,Ma, Jinji,Li, Zhengqiang,et al. Building a top-down method based on machine learning for evaluating energy intensity at a fine scale[J]. ENERGY,2022,255.
APA Guo, Jinyu,Ma, Jinji,Li, Zhengqiang,&Hong, Jin.(2022).Building a top-down method based on machine learning for evaluating energy intensity at a fine scale.ENERGY,255.
MLA Guo, Jinyu,et al."Building a top-down method based on machine learning for evaluating energy intensity at a fine scale".ENERGY 255(2022).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。