中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Aging Detection of 110 kV XLPE Cable for a CFETR Power Supply System Based on Deep Neural Network

文献类型:期刊论文

作者Chen, Hui1,2; Wang, Junjia1; Hu, Hejun1,2; Li, Xiaofeng1,2; Huang, Yiyun1
刊名ENERGIES
出版日期2022-05-01
卷号15
关键词TOKAMAK cable aging CFETR high harmonic content deep neural network
DOI10.3390/en15093127
通讯作者Huang, Yiyun(yyhuang@ipp.ac.cn)
英文摘要To detect the aging of power cables in the TOKAMAK power supply systems, this paper proposed a deep neural network diagnosis model and algorithm for power cable aging, based on logistic regression according to the characteristics of different high-order harmonics generated by different aging parts of the power cable. The experimental results showed that the model has high diagnostic accuracy, and the average error is only 2.35%. The method proposed in this paper has certain application potential in the CFETR power cable auxiliary monitoring system.
WOS关键词FAULT-DIAGNOSIS
资助项目Comprehensive Research Facility For Fusion Technology Program Of China[2018-000052-73-01-001228] ; Hefei Institutes Of Physical Science Fund, Chinese Academy Of Sciences[Yzjj2021qn16]
WOS研究方向Energy & Fuels
语种英语
WOS记录号WOS:000794498000001
出版者MDPI
资助机构Comprehensive Research Facility For Fusion Technology Program Of China ; Hefei Institutes Of Physical Science Fund, Chinese Academy Of Sciences
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/130849]  
专题中国科学院合肥物质科学研究院
通讯作者Huang, Yiyun
作者单位1.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
2.USTC, Scinece Isl Branch, Grad Sch, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hui,Wang, Junjia,Hu, Hejun,et al. Aging Detection of 110 kV XLPE Cable for a CFETR Power Supply System Based on Deep Neural Network[J]. ENERGIES,2022,15.
APA Chen, Hui,Wang, Junjia,Hu, Hejun,Li, Xiaofeng,&Huang, Yiyun.(2022).Aging Detection of 110 kV XLPE Cable for a CFETR Power Supply System Based on Deep Neural Network.ENERGIES,15.
MLA Chen, Hui,et al."Aging Detection of 110 kV XLPE Cable for a CFETR Power Supply System Based on Deep Neural Network".ENERGIES 15(2022).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。