中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dual feature fusion network: A dual feature fusion network for point cloud completion

文献类型:期刊论文

作者Gao, Fang3; Shi, Pengbo3; Wang, Jiabao3; Li, Wenbo2; Wang, Yaoxiong2; Yu, Jun1; Li, Yong3; Shuang, Feng3
刊名IET COMPUTER VISION
出版日期2022-05-26
ISSN号1751-9632
DOI10.1049/cvi2.12111
通讯作者Li, Yong(yongli@gxu.edu.cn) ; Shuang, Feng(fshuang@gxu.edu.cn)
英文摘要Point cloud data in the real world is often affected by occlusion and light reflection, leading to incompleteness of the data. Large-region missing point clouds will cause great deviations in downstream tasks. A dual feature fusion network (DFF-Net) is proposed to improve the accuracy of the completion of a large missing region of the point cloud. First, a dual feature encoder is designed to extract and fuse the global and local features of the input point cloud. Subsequently, a decoder is used to directly generate a point cloud of missing region that retains local details. In order to make the generated point cloud more detailed, a loss function with multiple terms is employed to emphasise the distribution density and visual quality of the generated point cloud. A large number of experiments show that the authors' DFF-Net is better than the previous state-of-the-art methods in the aspect of point cloud completion.
资助项目Guangxi Science and Technology Base and Talent Project[2020AC19253] ; Anhui Provincial Key RD Program[202104a05020041] ; Anhui Provincial Key RD Program[202104a05020007] ; USTC Research Funds of the Double First-Class Initiative[YD2350002001] ; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology[20-065-40S005] ; Natural Science Foundation of Anhui Province[2108085J19] ; National Natural Science Foundation of China[61773359] ; National Natural Science Foundation of China[61720106009] ; National Natural Science Foundation of China[41871302]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000805375800001
出版者WILEY
资助机构Guangxi Science and Technology Base and Talent Project ; Anhui Provincial Key RD Program ; USTC Research Funds of the Double First-Class Initiative ; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology ; Natural Science Foundation of Anhui Province ; National Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/131173]  
专题中国科学院合肥物质科学研究院
通讯作者Li, Yong; Shuang, Feng
作者单位1.Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
2.Chinese Acad Sci, Hefei Inst Phys Sci, Hefei, Peoples R China
3.Guangxi Univ, Guangxi Key Lab Intelligent Control & Maintenance, Nanning 530004, Peoples R China
推荐引用方式
GB/T 7714
Gao, Fang,Shi, Pengbo,Wang, Jiabao,et al. Dual feature fusion network: A dual feature fusion network for point cloud completion[J]. IET COMPUTER VISION,2022.
APA Gao, Fang.,Shi, Pengbo.,Wang, Jiabao.,Li, Wenbo.,Wang, Yaoxiong.,...&Shuang, Feng.(2022).Dual feature fusion network: A dual feature fusion network for point cloud completion.IET COMPUTER VISION.
MLA Gao, Fang,et al."Dual feature fusion network: A dual feature fusion network for point cloud completion".IET COMPUTER VISION (2022).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。