Dual feature fusion network: A dual feature fusion network for point cloud completion
文献类型:期刊论文
作者 | Gao, Fang3; Shi, Pengbo3; Wang, Jiabao3; Li, Wenbo2![]() ![]() |
刊名 | IET COMPUTER VISION
![]() |
出版日期 | 2022-05-26 |
ISSN号 | 1751-9632 |
DOI | 10.1049/cvi2.12111 |
通讯作者 | Li, Yong(yongli@gxu.edu.cn) ; Shuang, Feng(fshuang@gxu.edu.cn) |
英文摘要 | Point cloud data in the real world is often affected by occlusion and light reflection, leading to incompleteness of the data. Large-region missing point clouds will cause great deviations in downstream tasks. A dual feature fusion network (DFF-Net) is proposed to improve the accuracy of the completion of a large missing region of the point cloud. First, a dual feature encoder is designed to extract and fuse the global and local features of the input point cloud. Subsequently, a decoder is used to directly generate a point cloud of missing region that retains local details. In order to make the generated point cloud more detailed, a loss function with multiple terms is employed to emphasise the distribution density and visual quality of the generated point cloud. A large number of experiments show that the authors' DFF-Net is better than the previous state-of-the-art methods in the aspect of point cloud completion. |
资助项目 | Guangxi Science and Technology Base and Talent Project[2020AC19253] ; Anhui Provincial Key RD Program[202104a05020041] ; Anhui Provincial Key RD Program[202104a05020007] ; USTC Research Funds of the Double First-Class Initiative[YD2350002001] ; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology[20-065-40S005] ; Natural Science Foundation of Anhui Province[2108085J19] ; National Natural Science Foundation of China[61773359] ; National Natural Science Foundation of China[61720106009] ; National Natural Science Foundation of China[41871302] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000805375800001 |
出版者 | WILEY |
资助机构 | Guangxi Science and Technology Base and Talent Project ; Anhui Provincial Key RD Program ; USTC Research Funds of the Double First-Class Initiative ; Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology ; Natural Science Foundation of Anhui Province ; National Natural Science Foundation of China |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/131173] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Li, Yong; Shuang, Feng |
作者单位 | 1.Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China 2.Chinese Acad Sci, Hefei Inst Phys Sci, Hefei, Peoples R China 3.Guangxi Univ, Guangxi Key Lab Intelligent Control & Maintenance, Nanning 530004, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Fang,Shi, Pengbo,Wang, Jiabao,et al. Dual feature fusion network: A dual feature fusion network for point cloud completion[J]. IET COMPUTER VISION,2022. |
APA | Gao, Fang.,Shi, Pengbo.,Wang, Jiabao.,Li, Wenbo.,Wang, Yaoxiong.,...&Shuang, Feng.(2022).Dual feature fusion network: A dual feature fusion network for point cloud completion.IET COMPUTER VISION. |
MLA | Gao, Fang,et al."Dual feature fusion network: A dual feature fusion network for point cloud completion".IET COMPUTER VISION (2022). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。