Multi-Frame Constrained Block Sparse Bayesian Learning for Flexible Tactile Sensing Using Electrical Impedance Tomography
文献类型:期刊论文
作者 | Ma, Gang2; Chen, Haofeng1; Wang, Peng1; Wang, Xiaojie1![]() |
刊名 | IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
![]() |
出版日期 | 2022 |
卷号 | 8 |
关键词 | Block Sparse Bayesian Learning electrical impedance tomography image reconstruction tactile sensing |
ISSN号 | 2573-0436 |
DOI | 10.1109/TCI.2022.3177361 |
通讯作者 | Wang, Xiaojie(1103540209@qq.com) |
英文摘要 | In this paper, we presented a multi-frame constrained block sparse Bayesian learning (MFC-BSBL) reconstruction algorithm to tackle the challenge of poor-quality reconstruction images in electrical impedance tomography (EIT) for tactile sensing. The fundamental idea of MFC-BSBL is to explore the sparsity, intra-frame correlation, and inter-frame correlation of impedance distributions by extending the Bayesian inference framework. To verify the proposed algorithm, we conducted numerical simulations for different cases to identify one, multiple, round, and square targets. The simulation results demonstrated that this method can effectively detect the target positions and shapes by reducing artifacts and noise in the reconstructed images. To demonstrate the application of this approach to real EIT-based tactile sensing, we conducted real-contact detection experiments using the EIT tactile sensor system. Compared with traditional methods, the tactile sensor system using the MFC-BSBL algorithm can achieve accurate contact detection and significantly reduce artifacts and noise. |
资助项目 | Key Support Project of Dean Fund of Hefei Institutes of Physical Science, CAS[YZJJZX202017] ; Innovation and Entrepreneurship Fund of Science IslandGraduate Innovation and Entrepreneurship Center[KY-2021-SC-03] ; [HZ2021018] |
WOS研究方向 | Engineering ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000805767700001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Key Support Project of Dean Fund of Hefei Institutes of Physical Science, CAS ; Innovation and Entrepreneurship Fund of Science IslandGraduate Innovation and Entrepreneurship Center |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/131207] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Wang, Xiaojie |
作者单位 | 1.Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China 2.Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Gang,Chen, Haofeng,Wang, Peng,et al. Multi-Frame Constrained Block Sparse Bayesian Learning for Flexible Tactile Sensing Using Electrical Impedance Tomography[J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,2022,8. |
APA | Ma, Gang,Chen, Haofeng,Wang, Peng,&Wang, Xiaojie.(2022).Multi-Frame Constrained Block Sparse Bayesian Learning for Flexible Tactile Sensing Using Electrical Impedance Tomography.IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,8. |
MLA | Ma, Gang,et al."Multi-Frame Constrained Block Sparse Bayesian Learning for Flexible Tactile Sensing Using Electrical Impedance Tomography".IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 8(2022). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。