中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An attention-based feature pyramid network for single-stage small object detection

文献类型:期刊论文

作者Jiao, Lin2,3; Kang, Chenrui1; Dong, Shifeng3,4; Chen, Peng2; Li, Gaoqiang2; Wang, Rujing3,4
刊名MULTIMEDIA TOOLS AND APPLICATIONS
出版日期2022-11-18
关键词Object detection Feature pyramid network Feature fusion Single-stage Small object
ISSN号1380-7501
DOI10.1007/s11042-022-14159-2
通讯作者Jiao, Lin(ljiao@ahu.edu.cn)
英文摘要Recently, single-stage detection methods have made great progress, achieving comparable accuracy to two-stage detection methods. However, they have poor performance over small object detection. In this work, we improve the performance of the single-stage detector for detecting objects of small sizes. The proposed method makes two major novel contributions. The first is to devise an attention-based feature pyramid network (aFPN) by introducing a learnable fusion factor for controlling feature information that deep layers deliver to shallow layers. The design of a learnable fusion factor could adapt a feature pyramid network to small object detection. The second contribution is to propose a soft-weighted loss function, which reduces the false attention during network training. To be specify, we reweight the contribution of training samples to the network loss according to their distances with the boundaries of the ground-truth box, leading to fewer false-positive detections. To verify the performance of the proposed method, we conduct extensive experiments on different datasets by comparing including RetinaNet, ATSS, FCOS, FreeAnchor, et al. Experimental results show that our method can achieve 44.2% AP on MS COCO dataset, 23.0% AP on VisDrone dataset, which significantly gains improvements with nearly no computation overhead.
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000885231500004
出版者SPRINGER
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/131612]  
专题中国科学院合肥物质科学研究院
通讯作者Jiao, Lin
作者单位1.Southwest Univ Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
2.Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
3.Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
4.Univ Sci & Technol China, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Jiao, Lin,Kang, Chenrui,Dong, Shifeng,et al. An attention-based feature pyramid network for single-stage small object detection[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2022.
APA Jiao, Lin,Kang, Chenrui,Dong, Shifeng,Chen, Peng,Li, Gaoqiang,&Wang, Rujing.(2022).An attention-based feature pyramid network for single-stage small object detection.MULTIMEDIA TOOLS AND APPLICATIONS.
MLA Jiao, Lin,et al."An attention-based feature pyramid network for single-stage small object detection".MULTIMEDIA TOOLS AND APPLICATIONS (2022).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。