中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ClassyTune: A Performance Auto-Tuner for Systems in the Cloud

文献类型:期刊论文

作者Zhu, Yuqing1; Liu, Jianxun2
刊名IEEE TRANSACTIONS ON CLOUD COMPUTING
出版日期2022
卷号10期号:1页码:234-246
关键词Performance tuning auto-tuning autotuner data-driven tuning experience-driven tuning performance modeling
ISSN号2168-7161
DOI10.1109/TCC.2019.2936567
英文摘要Performance tuning can improve the system performance and thus enable the reduction of cloud computing resources needed to support an application. Due to the ever increasing number of parameters and complexity of systems, there is a necessity to automate performance tuning for the complicated systems in the cloud. The state-of-the-art tuning methods are adopting either the experience-driven tuning approach or the data-driven one. Data-driven tuning is attracting increasing attentions, as it has wider applicability. But existing data-driven methods cannot fully address the challenges of sample scarcity and high dimensionality simultaneously. We present ClassyTune, a data-driven automatic configuration tuning tool for cloud systems. ClassyTune exploits the machine learning model of classification for auto-tuning. This exploitation enables the induction of more training samples without increasing the input dimension. Experiments on seven popular systems in the cloud show that ClassyTune can effectively tune system performance to seven times higher for high-dimensional configuration space, outperforming expert tuning and the state-of-the-art auto-tuning solutions. We also describe a use case in which performance tuning enables the reduction of 33 percent computing resources needed to run an online stateless service.
资助项目National Key R&D Program of China[2016YFB1000201] ; National Natural Science Foundation of China[61420106013] ; Youth Innovation Promotion Association of Chinese Academy of Sciences
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000766635400019
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/18946]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Yuqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.UTuned Sci & Technol Co Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yuqing,Liu, Jianxun. ClassyTune: A Performance Auto-Tuner for Systems in the Cloud[J]. IEEE TRANSACTIONS ON CLOUD COMPUTING,2022,10(1):234-246.
APA Zhu, Yuqing,&Liu, Jianxun.(2022).ClassyTune: A Performance Auto-Tuner for Systems in the Cloud.IEEE TRANSACTIONS ON CLOUD COMPUTING,10(1),234-246.
MLA Zhu, Yuqing,et al."ClassyTune: A Performance Auto-Tuner for Systems in the Cloud".IEEE TRANSACTIONS ON CLOUD COMPUTING 10.1(2022):234-246.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。