中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
AME: Attention and Memory Enhancement in Hyper-Parameter Optimization

文献类型:会议论文

作者Xu, Nuo2,3; Chang, Jianlong1; Nie, Xing2,3; Huo, Chunlei2,3; Xiang, Shiming2,3; Pan, Chunhong2,3
出版日期2022
会议日期2022.6.19-6.24
会议地点New Orleans, USA
英文摘要

Training Deep Neural Networks (DNNs) is inherently subject to sensitive hyper-parameters and untimely feedbacks of performance evaluation. To solve these two difficulties, an efficient parallel hyper-parameter optimization model is proposed under the framework of Deep Reinforcement Learning (DRL). Technically, we develop Attention and Memory Enhancement (AME), that includes multi-head attention and memory mechanism to enhance the ability to capture both the short-term and long-term relationships between different hyper-parameter configurations, yielding an attentive sampling mechanism for searching high-performance configurations embedded into a huge search space. During the optimization of transformer-structured configuration searcher, a conceptually intuitive yet powerful strategy is applied to solve the problem of insufficient number of samples due to the untimely feedback. Experiments on three visual tasks, including image classification, object detection, semantic segmentation, demonstrate the effectiveness of AME.

源URL[http://ir.ia.ac.cn/handle/173211/50608]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
通讯作者Huo, Chunlei
作者单位1.Huawei Cloud & AI
2.School of Artificial Intelligence, University of Chinese Academy of Sciences
3.NLPR, Institute of Automation, Chinese Academy of Sciences,
推荐引用方式
GB/T 7714
Xu, Nuo,Chang, Jianlong,Nie, Xing,et al. AME: Attention and Memory Enhancement in Hyper-Parameter Optimization[C]. 见:. New Orleans, USA. 2022.6.19-6.24.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。