中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Hierarchical LiDAR Odometry via Maximum Likelihood Estimation With Tightly Associated Distributions

文献类型:期刊论文

作者Wang, Chengpeng2,3; Cao, Zhiqiang2,3; Li, Jianjie2,3; Liang, Shuang2,3; Tan, Min2,3; Yu, Junzhi1
刊名IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
出版日期2022-10-01
卷号71期号:10页码:10254-10268
关键词Point cloud compression Laser radar Feature extraction Smoothing methods Three-dimensional displays Optimization Simultaneous localization and mapping 3D LiDAR odometry fixed-lag smoothing hierarchical optimization maximum likelihood estimation
ISSN号0018-9545
DOI10.1109/TVT.2022.3183202
通讯作者Cao, Zhiqiang(zhiqiang.cao@ia.ac.cn)
英文摘要LiDAR odometry has gained popularity due to accurate depth measurement with the robustness to illuminations. However, existing distribution-based methods do not sufficiently exploit the information from source point cloud, which affects the odometry performance. In this paper, a novel distribution-to-distribution matching method is proposed based on maximum likelihood estimation to solve relative transformation, where source and target point sets are tightly jointed to represent the sampling distribution in the objective function. On this basis, a hierarchical 3D LiDAR odometry with the low-level scan-to-map matching and high-level fixed-lag smoothing is designed. With the decoupling strategy, the matching method is extended to a fixed-lag smoothing module and the heavy computation burden is overcome. Our smoothing module is universal, which can be attached to LiDAR odometry framework for performance improvement. The experiments on KITTI dataset, Newer College dataset, and large-scale KITTI-360 dataset verify the effectiveness of the proposed method.
WOS关键词SCAN REGISTRATION ; SLAM ; DISTANCE ; POINT
资助项目National Natural Science Foundation of China[62073322] ; National Natural Science Foundation of China[61633020] ; National Natural Science Foundation of China[61836015]
WOS研究方向Engineering ; Telecommunications ; Transportation
语种英语
WOS记录号WOS:000870332400006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/50693]  
专题多模态人工智能系统全国重点实验室
通讯作者Cao, Zhiqiang
作者单位1.Peking Univ, Coll Engn, Dept Mech & Engn Sci, BIC ESAT,State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Chengpeng,Cao, Zhiqiang,Li, Jianjie,et al. A Hierarchical LiDAR Odometry via Maximum Likelihood Estimation With Tightly Associated Distributions[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2022,71(10):10254-10268.
APA Wang, Chengpeng,Cao, Zhiqiang,Li, Jianjie,Liang, Shuang,Tan, Min,&Yu, Junzhi.(2022).A Hierarchical LiDAR Odometry via Maximum Likelihood Estimation With Tightly Associated Distributions.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,71(10),10254-10268.
MLA Wang, Chengpeng,et al."A Hierarchical LiDAR Odometry via Maximum Likelihood Estimation With Tightly Associated Distributions".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 71.10(2022):10254-10268.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。