Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network
文献类型:期刊论文
作者 | Xinya Wang; Jiayi Ma; Junjun Jiang |
刊名 | IEEE/CAA Journal of Automatica Sinica
![]() |
出版日期 | 2023 |
卷号 | 10期号:1页码:78-89 |
关键词 | Blind super-resolution contrastive learning deep learning image super-resolution (SR) |
ISSN号 | 2329-9266 |
DOI | 10.1109/JAS.2022.105914 |
英文摘要 | Previous deep learning-based super-resolution (SR) methods rely on the assumption that the degradation process is predefined (e.g., bicubic downsampling). Thus, their performance would suffer from deterioration if the real degradation is not consistent with the assumption. To deal with real-world scenarios, existing blind SR methods are committed to estimating both the degradation and the super-resolved image with an extra loss or iterative scheme. However, degradation estimation that requires more computation would result in limited SR performance due to the accumulated estimation errors. In this paper, we propose a contrastive regularization built upon contrastive learning to exploit both the information of blurry images and clear images as negative and positive samples, respectively. Contrastive regularization ensures that the restored image is pulled closer to the clear image and pushed far away from the blurry image in the representation space. Furthermore, instead of estimating the degradation, we extract global statistical prior information to capture the character of the distortion. Considering the coupling between the degradation and the low-resolution image, we embed the global prior into the distortion-specific SR network to make our method adaptive to the changes of distortions. We term our distortion-specific network with contrastive regularization as CRDNet. The extensive experiments on synthetic and real-world scenes demonstrate that our lightweight CRDNet surpasses state-of-the-art blind super-resolution approaches. |
源URL | [http://ir.ia.ac.cn/handle/173211/50728] ![]() |
专题 | 自动化研究所_学术期刊_IEEE/CAA Journal of Automatica Sinica |
推荐引用方式 GB/T 7714 | Xinya Wang,Jiayi Ma,Junjun Jiang. Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network[J]. IEEE/CAA Journal of Automatica Sinica,2023,10(1):78-89. |
APA | Xinya Wang,Jiayi Ma,&Junjun Jiang.(2023).Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network.IEEE/CAA Journal of Automatica Sinica,10(1),78-89. |
MLA | Xinya Wang,et al."Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network".IEEE/CAA Journal of Automatica Sinica 10.1(2023):78-89. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。