中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting root zone soil moisture using observations at 2121 sites across China

文献类型:期刊论文

作者Tian, Jing2; Zhang, Yongqiang2; Guo, Jianping1; Zhang, Xuanze2; Ma, Ning2; Wei, Haoshan2,3; Tang, Zixuan2,3
刊名SCIENCE OF THE TOTAL ENVIRONMENT
出版日期2022-11-15
卷号847页码:10
关键词Exponential filter method Root zone soil moisture Random forest classifier China
ISSN号0048-9697
DOI10.1016/j.scitotenv.2022.157425
通讯作者Zhang, Yongqiang(zhangyq@igsnrr.ac.cn)
英文摘要Root zone soil moisture (RZSM) is particularly useful for understanding hydrological processes, plant-land-atmosphere exchanges, and agriculture- and climate-related research. This study aims to estimate RZSM across China by using a one-parameter (T) exponential filter method (EF method) together with a randomforest (RF) regionalization approach and by using a large dataset containing in situ observations collected at 2121 sites across China. First, at each site, T is optimized at each of four soil layers (10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm) by using 0-10-cm soil layer observations and the corresponding calibration layers. Second, an RF classifier is built for each layer according to the calibrated T values and 14 soil, climate and vegetation parameters across 2121 sites. Third, the calibrated T at each soil layer is regionalized with an established RF classifier. Spatial T maps are given for each soil layer across China. Our results show that the EF method performs reasonably well in predicting RZSM at the 10-20-cm, 20-30-cm, 30-40-cm and 40-50-cm layers, with Nash-Sutcliffe efficiency (NSE) medians of 0.73, 0.52, 0.38 and 0.27, respectively, between the observations and estimations. The T parameter shows a spatial pattern in each soil layer and is largely controlled by climate regimes. This study offers an improved RZSM estimation method using a large dataset containing in situ observations; the proposed method also has the potential to be used in other parts of the world.
WOS关键词NEAR-SURFACE ; EXPONENTIAL FILTER ; LAND-SURFACE ; EVAPORATION ; DEPTHS
资助项目National Science Foundation of China[42071327] ; National Science Foundation of China[41671354] ; CAS Pioneer Hundred Talent Program, IGSNRR Supporting Fund[YJRCPT2019-101] ; Science for a Better Development of Inner Mongolia Program of the Bureau of Science and Technology of the Inner Mongolia Province[KJXMEEDS-2020005]
WOS研究方向Environmental Sciences & Ecology
语种英语
WOS记录号WOS:000888035800004
出版者ELSEVIER
资助机构National Science Foundation of China ; CAS Pioneer Hundred Talent Program, IGSNRR Supporting Fund ; Science for a Better Development of Inner Mongolia Program of the Bureau of Science and Technology of the Inner Mongolia Province
源URL[http://ir.igsnrr.ac.cn/handle/311030/187315]  
专题中国科学院地理科学与资源研究所
通讯作者Zhang, Yongqiang
作者单位1.Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res IGSNRR, Key Lab Water Cycle & Related Land Surface Proces, A11 Datun Rd, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Tian, Jing,Zhang, Yongqiang,Guo, Jianping,et al. Predicting root zone soil moisture using observations at 2121 sites across China[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2022,847:10.
APA Tian, Jing.,Zhang, Yongqiang.,Guo, Jianping.,Zhang, Xuanze.,Ma, Ning.,...&Tang, Zixuan.(2022).Predicting root zone soil moisture using observations at 2121 sites across China.SCIENCE OF THE TOTAL ENVIRONMENT,847,10.
MLA Tian, Jing,et al."Predicting root zone soil moisture using observations at 2121 sites across China".SCIENCE OF THE TOTAL ENVIRONMENT 847(2022):10.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。