中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Machine learning glass caging order parameters with an artificial nested neural network

文献类型:期刊论文

作者Zhang, Kaihua; Li, Xinyang3,4; Jin, Yuliang1,3,4; Jiang, Ying5
刊名SOFT MATTER
出版日期2022
卷号18期号:33页码:6270-6277
关键词LIQUIDS TRANSITIONS
ISSN号1744-683X
DOI10.1039/d2sm00310d
英文摘要Around a glass transition, the dynamics of a supercooled liquid dramatically slow down, exhibited by caging of particles, while the structural changes remain subtle. Alternative to recent machine learning studies searching for structural predictors of glassy dynamics, here we propose to learn directly particle caging features defined purely according to dynamics. We focus on three transitions in a simulated hard sphere glass model, the melting of ultra-stable glasses, the Gardner transition and the liquid to ordinary glass transition. Implementing the machine learning algorithm based on a two-level nested neural network, we attain not only appropriate caging order parameters for all three transitions, but also a phase classification for input samples. A finite-size scaling analysis of the phase classification results identifies the order of melting (first) and Gardner (second) transitions. A false positive is avoided, as the liquid to glass transition is indicated as a crossover, rather than a phase transition with a well-defined transition point. This study paves the way to a generic approach for learning dynamical features in glassy systems, with a minimum requirement of system-specific knowledge.
学科主题Chemistry ; Materials Science ; Physics ; Polymer Science
语种英语
源URL[http://ir.itp.ac.cn/handle/311006/27790]  
专题理论物理研究所_理论物理所1978-2010年知识产出
作者单位1.Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
2.Beihang Univ, Ctr Soft Matter Phys & Its Applicat, Beijing 100191, Peoples R China
3.Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
4.Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325000, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Kaihua,Li, Xinyang,Jin, Yuliang,et al. Machine learning glass caging order parameters with an artificial nested neural network[J]. SOFT MATTER,2022,18(33):6270-6277.
APA Zhang, Kaihua,Li, Xinyang,Jin, Yuliang,&Jiang, Ying.(2022).Machine learning glass caging order parameters with an artificial nested neural network.SOFT MATTER,18(33),6270-6277.
MLA Zhang, Kaihua,et al."Machine learning glass caging order parameters with an artificial nested neural network".SOFT MATTER 18.33(2022):6270-6277.

入库方式: OAI收割

来源:理论物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。