Anisotropic Weighted Total Variation Feature Fusion Network for Remote Sensing Image Denoising
文献类型:期刊论文
作者 | Qi, Huiqing1,2,3; Tan, Shengli3; Li, Zhichao1 |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2022-12-01 |
卷号 | 14期号:24页码:34 |
关键词 | remote sensing image noise removal weighted total variation feature fusion convolutional neural network |
DOI | 10.3390/rs14246300 |
通讯作者 | Li, Zhichao(lizc@igsnrr.ac.cn) |
英文摘要 | Remote sensing images are widely applied in instance segmentation and objetive recognition; however, they often suffer from noise, influencing the performance of subsequent applications. Previous image denoising works have only obtained restored images without preserving detailed texture. To address this issue, we proposed a novel model for remote sensing image denoising, called the anisotropic weighted total variation feature fusion network (AWTVF(2)Net), consisting of four novel modules (WTV-Net, SOSB, AuEncoder, and FB). AWTVF(2)Net combines traditional total variation with a deep neural network, improving the denoising ability of the proposed approach. Our proposed method is evaluated by PSNR and SSIM metrics on three benchmark datasets (NWPU, PatternNet, UCL), and the experimental results show that AWTVF(2)Net can obtain 0.12 similar to 19.39 dB/0.0237 similar to 0.5362 higher on PSNR/SSIM values in the Gaussian noise removal and mixed noise removal tasks than State-of-The-Art (SoTA) algorithms. Meanwhile, our model can preserve more detailed texture features. The SSEQ, BLIINDS-II, and BRISQUE values of AWTVF(2)Net on the three real-world datasets (AVRIS Indian Pines, ROSIS University of Pavia, HYDICE Urban) are 3.94 similar to 12.92 higher, 8.33 similar to 27.5 higher, and 2.2 similar to 5.55 lower than those of the compared methods, respectively. The proposed framework can guide subsequent remote sensing image applications, regarding the pre-processing of input images. |
WOS关键词 | QUALITY ASSESSMENT ; RESTORATION ; CNN |
资助项目 | Informatization Plan of Chinese Academy of Sciences ; National Key Research and Development Program of China ; National Natural Science Foundation of China ; Shanghai Science and Technology Commission Foundation ; [CAS-WX2021PY-0109] ; [2018AAA0101001] ; [11731004] ; [12126323] ; [11761141005] ; [22DZ2229014] ; [20511100200] |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000903368400001 |
出版者 | MDPI |
资助机构 | Informatization Plan of Chinese Academy of Sciences ; National Key Research and Development Program of China ; National Natural Science Foundation of China ; Shanghai Science and Technology Commission Foundation |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/188715] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Li, Zhichao |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China 2.East China Normal Univ, Shanghai Inst AI Educ, Shanghai 200062, Peoples R China 3.East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Huiqing,Tan, Shengli,Li, Zhichao. Anisotropic Weighted Total Variation Feature Fusion Network for Remote Sensing Image Denoising[J]. REMOTE SENSING,2022,14(24):34. |
APA | Qi, Huiqing,Tan, Shengli,&Li, Zhichao.(2022).Anisotropic Weighted Total Variation Feature Fusion Network for Remote Sensing Image Denoising.REMOTE SENSING,14(24),34. |
MLA | Qi, Huiqing,et al."Anisotropic Weighted Total Variation Feature Fusion Network for Remote Sensing Image Denoising".REMOTE SENSING 14.24(2022):34. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。