保护隐私的集合相似性度量协同计算协议
文献类型:期刊论文
作者 | 逯绍锋; 胡玉龙; 逯跃锋 |
刊名 | 计算机技术与发展
![]() |
出版日期 | 2023-01-10 |
卷号 | 33期号:01页码:137-143 |
关键词 | 隐私保护 安全多方计算 杰卡德距离 集合相似性度量 机器学习 |
ISSN号 | 1673-629X |
英文摘要 | 集合相似性度量是机器学习领域的基本问题之一,研究如何在保护数据隐私的前提下计算两个集合间的相似性问题,在保护数据隐私的机器学习、图形识别、生物信息学等方面有着重要的理论意义与应用价值。在机器学习中估算不同样本集合之间的相似性时,通常通过计算集合相似度来对样本之间的相似程度进行估算,这一类集合之间的相似度统称为集合距离。其中,最常用到的集合距离就是杰卡德距离。文中从集合间杰卡德距离入手,首先通过设计一种新的编码方法,对参与计算的数据进行位置数字编码,将相似性度量问题转化为求两集合间相同数字个数问题,进而结合异或思想,借助同态加密体制具体设计了可以保护隐私的集合杰卡德距离协同计算协议,从而解决了集合间相似性度量的隐私保护问题。模拟器证明该协议是安全的,结果分析表明协议可以高效安全地判定出两对象间集合数据的相似性,在保护隐私的集合相似性度量方面,该方法具备一定的普适性。 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/188619] ![]() |
专题 | 资源与环境信息系统国家重点实验室_中文论文 |
作者单位 | 1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室 2.山东理工大学建筑工程学院 3.中国交通通信信息中心 4.东北大学计算机科学与工程学院 |
推荐引用方式 GB/T 7714 | 逯绍锋,胡玉龙,逯跃锋. 保护隐私的集合相似性度量协同计算协议[J]. 计算机技术与发展,2023,33(01):137-143. |
APA | 逯绍锋,胡玉龙,&逯跃锋.(2023).保护隐私的集合相似性度量协同计算协议.计算机技术与发展,33(01),137-143. |
MLA | 逯绍锋,et al."保护隐私的集合相似性度量协同计算协议".计算机技术与发展 33.01(2023):137-143. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。