The Fucik spectrum of Schrodinger operators in strongly indefinite cases
文献类型:期刊论文
作者 | Song, Linjie1,2 |
刊名 | NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
![]() |
出版日期 | 2023-03-01 |
卷号 | 30期号:2页码:28 |
关键词 | Fucik spectrum Schrodinger operators Essential spectrum Jumping nonlinearities |
ISSN号 | 1021-9722 |
DOI | 10.1007/s00030-022-00827-7 |
英文摘要 | In this work, we study the Fucik spectrum for the Schrodinger operator -delta + V when -delta + V is strongly indefinite. More precisely, we aim to show the existence of two Fucik spectrum curves stemming from a distinct eigenvalue, which is in a gap of the essential spectrum. Our method is variational and main difficulties arise from the indefiniteness of the associate functional. We use new strategies to deal with the underlying difficulties of establishing boundedness and compactness properties of (PS) sequences and then use a finite-dimensional approximation method. As an application, we show the existence of a nontrivial solution for nonlinear Schrodinger equations with jumping nonlinearities in strongly indefinite cases. |
资助项目 | CEMS |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000902003900001 |
出版者 | SPRINGER INT PUBL AG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/60455] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Song, Linjie |
作者单位 | 1.Acad Sinica, Inst Math, AMSS, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Song, Linjie. The Fucik spectrum of Schrodinger operators in strongly indefinite cases[J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS,2023,30(2):28. |
APA | Song, Linjie.(2023).The Fucik spectrum of Schrodinger operators in strongly indefinite cases.NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS,30(2),28. |
MLA | Song, Linjie."The Fucik spectrum of Schrodinger operators in strongly indefinite cases".NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS 30.2(2023):28. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。