Universal potential estimates for 1 < p <= 2-1 dagger n
文献类型:期刊论文
作者 | Nguyen, Quoc-Hung1; Phuc, Nguyen Cong2 |
刊名 | MATHEMATICS IN ENGINEERING
![]() |
出版日期 | 2023 |
卷号 | 5期号:3页码:1-24 |
关键词 | pointwise estimate potential estimate Wolff?s potential Riesz?s potential fractional maximal function Caldero?n space p-Laplacian quasilinear equation measure data |
DOI | 10.3934/mine.2023057 |
英文摘要 | We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205-4269, 2012) to the singular case 1 < p <= 2 - 1/n for the quasilinear equation with measure data - div(A(x, Vu)) = mu in a bounded open subset Omega of Rn, n > 2, with a finite signed measure mu in Omega. The operator div(A(x, Vu)) is modeled after the p-Laplacian Delta pu := div (|Vu|p-2Vu), where the nonlinearity A(x, xi) (x, xi E Rn) is assumed to satisfy natural growth and monotonicity conditions of order p, as well as certain additional regularity conditions in the x-variable. |
资助项目 | Academy of Mathematics and Systems Science, Chinese Academy of Sciences startup fund ; National Natural Science Foundation of China[12050410257] ; National Natural Science Foundation of China[12288201] ; National Key R&D Program of China[2021YFA1000800] ; Simons Foundation[426071] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000877771500001 |
出版者 | AMER INST MATHEMATICAL SCIENCES-AIMS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/60527] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Nguyen, Quoc-Hung |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Louisiana State Univ, Dept Math, 303 Lockett Hall, Baton Rouge, LA 70803 USA |
推荐引用方式 GB/T 7714 | Nguyen, Quoc-Hung,Phuc, Nguyen Cong. Universal potential estimates for 1 < p <= 2-1 dagger n[J]. MATHEMATICS IN ENGINEERING,2023,5(3):1-24. |
APA | Nguyen, Quoc-Hung,&Phuc, Nguyen Cong.(2023).Universal potential estimates for 1 < p <= 2-1 dagger n.MATHEMATICS IN ENGINEERING,5(3),1-24. |
MLA | Nguyen, Quoc-Hung,et al."Universal potential estimates for 1 < p <= 2-1 dagger n".MATHEMATICS IN ENGINEERING 5.3(2023):1-24. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。