中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Kahler-Ricci Flow With Log Canonical Singularities

文献类型:期刊论文

作者Chau, Albert2; Ge, Huabin3; Li, Ka-Fai4; Shen, Liangming1,5
刊名INTERNATIONAL MATHEMATICS RESEARCH NOTICES
出版日期2022-05-05
页码63
ISSN号1073-7928
DOI10.1093/imrn/rnac093
英文摘要We establish the existence of the Kahler-Ricci flow on projective varieties with log canonical singularities. This generalizes some of the existence results of Song-Tian [] in case of projective varieties with klt singularities. We also prove that the normalized Kahler-Ricci flow will converge to the Kahler-Einstein metric with negative Ricci curvature on semi-log canonical models in the sense of currents. Finally, we also construct Kahler-Ricci flow solutions performing divisorial contractions and flips with log canonical singularities.
资助项目Natural Sciences and Engineering Research Council of Canada ; National Natural Science Foundation of China ; [327637-06] ; [11871094] ; [11901553]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000891532900001
出版者OXFORD UNIV PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60580]  
专题中国科学院数学与系统科学研究院
通讯作者Shen, Liangming
作者单位1.Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
2.Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
3.Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
5.Minist Educ, Key Lab Math Informat Behav Semant, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Chau, Albert,Ge, Huabin,Li, Ka-Fai,et al. The Kahler-Ricci Flow With Log Canonical Singularities[J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2022:63.
APA Chau, Albert,Ge, Huabin,Li, Ka-Fai,&Shen, Liangming.(2022).The Kahler-Ricci Flow With Log Canonical Singularities.INTERNATIONAL MATHEMATICS RESEARCH NOTICES,63.
MLA Chau, Albert,et al."The Kahler-Ricci Flow With Log Canonical Singularities".INTERNATIONAL MATHEMATICS RESEARCH NOTICES (2022):63.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。