Deep Domain Decomposition Methods: Helmholtz Equation
文献类型:期刊论文
作者 | Li, Wuyang2,4; Wang, Ziming1,3; Cui, Tao1,3; Xu, Yingxiang4; Xiang, Xueshuang2 |
刊名 | ADVANCES IN APPLIED MATHEMATICS AND MECHANICS
![]() |
出版日期 | 2023-02-01 |
卷号 | 15期号:1页码:118-138 |
关键词 | Helmholtz equation deep learning domain decomposition method plane wave method |
ISSN号 | 2070-0733 |
DOI | 10.4208/aamm.OA-2021-0305 |
英文摘要 | This paper proposes a deep-learning-based Robin-Robin domain decom-position method (DeepDDM) for Helmholtz equations. We first present the plane wave activation-based neural network (PWNN), which is more efficient for solving Helmholtz equations with constant coefficients and wavenumber k than finite differ-ence methods (FDM). On this basis, we use PWNN to discretize the subproblems di-vided by domain decomposition methods (DDM), which is the main idea of Deep-DDM. This paper will investigate the number of iterations of using DeepDDM for continuous and discontinuous Helmholtz equations. The results demonstrate that: DeepDDM exhibits behaviors consistent with conventional robust FDM-based domain decomposition method (FDM-DDM) under the same Robin parameters, i.e., the num-ber of iterations by DeepDDM is almost the same as that of FDM-DDM. By choosing suitable Robin parameters on different subdomains, the convergence rate is almost constant with the rise of wavenumber in both continuous and discontinuous cases. The performance of DeepDDM on Helmholtz equations may provide new insights for improving the PDE solver by deep learning. |
资助项目 | National Key R&D Program of China[2019YFA0709600] ; National Key R&D Program of China[2019YFA0709602] ; China NSF[11831016] ; China NSF[12171468] ; China NSF[11771440] ; China NSF[12071069] ; Fundamental Research Funds for the Central Universities[JGPY202101] ; Innovation Foundation of Qian Xuesen Laboratory of Space Technology |
WOS研究方向 | Mathematics ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:000880390000004 |
出版者 | GLOBAL SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/60661] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Xiang, Xueshuang |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, LSEC, Beijing 100190, Peoples R China 2.China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 4.Northeast Normal Univ, Jilin Natl Appl Math Ctr NENU, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Wuyang,Wang, Ziming,Cui, Tao,et al. Deep Domain Decomposition Methods: Helmholtz Equation[J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,2023,15(1):118-138. |
APA | Li, Wuyang,Wang, Ziming,Cui, Tao,Xu, Yingxiang,&Xiang, Xueshuang.(2023).Deep Domain Decomposition Methods: Helmholtz Equation.ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,15(1),118-138. |
MLA | Li, Wuyang,et al."Deep Domain Decomposition Methods: Helmholtz Equation".ADVANCES IN APPLIED MATHEMATICS AND MECHANICS 15.1(2023):118-138. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。