中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Gaussian limit for determinantal point processes with J-Hermitian kernels

文献类型:期刊论文

作者Lin, Zhaofeng2; Qiu, Yanqi1,3; Wang, Kai4
刊名SCIENCE CHINA-MATHEMATICS
出版日期2022-10-25
页码16
关键词determinantal point process J-Hermitian kernel linear statistics central limit theorem translation-invariant kernel
ISSN号1674-7283
DOI10.1007/s11425-021-1977-x
英文摘要We show that the central limit theorem for linear statistics over determinantal point processes with J-Hermitian kernels holds under fairly general conditions. In particular, we establish the Gaussian limit for linear statistics over determinantal point processes on the union of two copies of Double-struck capital R-d when the correlation kernels are J-Hermitian translation-invariant.
资助项目National Natural Science Foundation of China[11722102] ; National Natural Science Foundation of China[12026250] ; Shanghai Technology Innovation Project[21JC1400800] ; Laboratory of Mathematics for Nonlinear Science, Ministry of Education of China
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000877457500001
出版者SCIENCE PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60710]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, Kai
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
2.Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
4.Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
推荐引用方式
GB/T 7714
Lin, Zhaofeng,Qiu, Yanqi,Wang, Kai. Gaussian limit for determinantal point processes with J-Hermitian kernels[J]. SCIENCE CHINA-MATHEMATICS,2022:16.
APA Lin, Zhaofeng,Qiu, Yanqi,&Wang, Kai.(2022).Gaussian limit for determinantal point processes with J-Hermitian kernels.SCIENCE CHINA-MATHEMATICS,16.
MLA Lin, Zhaofeng,et al."Gaussian limit for determinantal point processes with J-Hermitian kernels".SCIENCE CHINA-MATHEMATICS (2022):16.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。