中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows

文献类型:期刊论文

作者Zhang, Rui2; Hu, Peiyan2; Meng, Qi3,4; Wang, Yue3; Zhu, Rongchan1; Chen, Bingguang2; Ma, Zhi-Ming2; Liu, Tie-Yan3
刊名PHYSICS OF FLUIDS
出版日期2022-10-01
卷号34期号:10页码:21
ISSN号1070-6631
DOI10.1063/5.0110342
英文摘要We present the deep random vortex network (DRVN), a novel physics-informed framework for simulating and inferring the fluid dynamics governed by the incompressible Navier-Stokes equations. Unlike the existing physics-informed neural network (PINN), which embeds physical and geometry information through the residual of equations and boundary data, DRVN automatically embeds this information into neural networks through neural random vortex dynamics equivalent to the Navier-Stokes equation. Specifically, the neural random vortex dynamics motivates a Monte Carlo-based loss function for training neural networks, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVN can efficiently solve Navier-Stokes equations with non-differentiable initial conditions and fractional operators. Furthermore, DRVN naturally embeds the boundary conditions into the kernel function of the neural random vortex dynamics and, thus, does not need additional data to obtain boundary information. We conduct experiments on forward and inverse problems with incompressible Navier-Stokes equations. The proposed method achieves accurate results when simulating and when inferring Navier-Stokes equations. For situations that include singular initial conditions and agnostic boundary data, DRVN significantly outperforms the existing PINN method. Furthermore, compared with the conventional adjoint method when solving inverse problems, DRVN achieves a 2 orders of magnitude improvement for the training time with significantly precise estimates. Published under an exclusive license by AIP Publishing.
资助项目Microsoft Research AI4Science
WOS研究方向Mechanics ; Physics
语种英语
WOS记录号WOS:000876715800007
出版者AIP Publishing
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60722]  
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Rui; Hu, Peiyan
作者单位1.Bielefeld Univ Math, Bielefeld, Germany
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
3.Microsoft Res AI4Sci, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Hu, Peiyan,Meng, Qi,et al. DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows[J]. PHYSICS OF FLUIDS,2022,34(10):21.
APA Zhang, Rui.,Hu, Peiyan.,Meng, Qi.,Wang, Yue.,Zhu, Rongchan.,...&Liu, Tie-Yan.(2022).DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows.PHYSICS OF FLUIDS,34(10),21.
MLA Zhang, Rui,et al."DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows".PHYSICS OF FLUIDS 34.10(2022):21.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。