中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Upper and Lower Bounds for Matrix Discrepancy

文献类型:期刊论文

作者Xie, Jiaxin2; Xu, Zhiqiang1,3; Zhu, Ziheng1,3
刊名JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
出版日期2022-12-01
卷号28期号:6页码:23
关键词Matrix discrepancy Tight frame Interlacing polynomials Kadison-Singer problem
ISSN号1069-5869
DOI10.1007/s00041-022-09976-w
英文摘要The aim of this paper is to study the matrix discrepancy problem. Assume that xi(1), ..., xi(n) are independent scalar random variables with finite support and u(1), ..., u(n) is an element of C-d. Let C-0 be the minimal constant for which the following holds: Disc(u(1)u(1)*,..., u(n)u(n)* ;xi(1), ..., xi(n)) := min(epsilon 1 subset of S1, ..., epsilon n subset of Sn) parallel to Sigma(n)(i=1) E[xi(i)]u(i) u(i)* - Sigma(n)(i=1) epsilon(i)u(i)u(i)*parallel to <= C-0.sigma, where sigma(2) = parallel to Sigma(n)(i=1) Var [xi(i)] (u(i)u(i)*)(2)parallel to and S-j denotes the support of xi(j), j = 1, ..., n. Motivated by the technology developed by Bownik, Casazza, Marcus, and Speegle [7], we prove C-0 <= 3. This improves Kyng, Luh and Song's method with which C-0 <= 4 [21]. For the case where {u(i)}(i=1)(n) subset of C-d is a unit-norm tight frame with n <= 2d - 1 and xi(1), ..., xi(n) are independent Rademacher random variables, we present the exact value of Disc (u(1)u(1)*, ..., u(n)u(n)* ;xi(1), ..., xi(n)) = root n/d.sigma, which implies C-0 >= root 2.
资助项目National Science Fund for Distinguished Young Scholars[12025108] ; NSFC[12001026] ; NSFC[12071019] ; NSFC[12021001]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000870331200002
出版者SPRINGER BIRKHAUSER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60737]  
专题中国科学院数学与系统科学研究院
通讯作者Xu, Zhiqiang
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R China
推荐引用方式
GB/T 7714
Xie, Jiaxin,Xu, Zhiqiang,Zhu, Ziheng. Upper and Lower Bounds for Matrix Discrepancy[J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,2022,28(6):23.
APA Xie, Jiaxin,Xu, Zhiqiang,&Zhu, Ziheng.(2022).Upper and Lower Bounds for Matrix Discrepancy.JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS,28(6),23.
MLA Xie, Jiaxin,et al."Upper and Lower Bounds for Matrix Discrepancy".JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS 28.6(2022):23.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。