DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS OF THE KAHLER-RICCI FLOW
文献类型:期刊论文
作者 | Jian, Wangjian1; Song, Jian2 |
刊名 | GEOMETRIC AND FUNCTIONAL ANALYSIS
![]() |
出版日期 | 2022-10-22 |
页码 | 22 |
ISSN号 | 1016-443X |
DOI | 10.1007/s00039-022-00620-9 |
英文摘要 | It is well known that the Kahler-Ricci flow on a Kahler manifold X admits a long-time solution if and only if X is a minimal model, i.e., the canonical line bundle KX is nef. The abundance conjecture in algebraic geometry predicts that KX must be semi-ample when X is a projective minimal model. We prove that if KX is semi-ample, then the diameter is uniformly bounded for long-time solutions of the normalized Kahler-Ricci flow. Our diameter estimate combined with the scalar curvature estimate in Song and Tian (Am J Math 138(3):683-695, 2016) for long-time solutions of the Kahler-Ricci flow are natural extensions of Perelman's diameter and scalar curvature estimates for short-time solutions on Fano manifolds. As an application, the normalized Kahler-Ricci flow on a minimal threefold X always converges sequentially in Gromov-Hausdorff topology to a compact metric space homeomorphic to its canonical model X-can. |
资助项目 | BICMR ; China Postdoctoral Science Foundation[2019M660827] ; National Natural Science Foundation of China[12288201] ; National Science Foundation[DMS-1711439] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000871154100001 |
出版者 | SPRINGER BASEL AG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/60758] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Jian, Wangjian |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China 2.Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA |
推荐引用方式 GB/T 7714 | Jian, Wangjian,Song, Jian. DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS OF THE KAHLER-RICCI FLOW[J]. GEOMETRIC AND FUNCTIONAL ANALYSIS,2022:22. |
APA | Jian, Wangjian,&Song, Jian.(2022).DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS OF THE KAHLER-RICCI FLOW.GEOMETRIC AND FUNCTIONAL ANALYSIS,22. |
MLA | Jian, Wangjian,et al."DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS OF THE KAHLER-RICCI FLOW".GEOMETRIC AND FUNCTIONAL ANALYSIS (2022):22. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。