中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Volume preserving flows for convex curves and surfaces in the hyperbolic space

文献类型:期刊论文

作者Wei, Yong1; Yang, Bo2
刊名JOURNAL OF FUNCTIONAL ANALYSIS
出版日期2022-12-01
卷号283期号:11页码:28
关键词Curvature flow Hyperbolic space Curve Surface
ISSN号0022-1236
DOI10.1016/j.jfa.2022.109685
英文摘要In this paper, we study the curvature flows of convex curves and surfaces in the hyperbolic space. In the first part, we consider the area preserving and length preserving is alpha-type curvature flows of smooth closed convex curves in the hy-perbolic plane H-2 and show that these two types of flows evolve convex curve to a geodesic circle exponentially in C-infinity topology. In the second part, we study the volume preserving Gauss curvature flow of smooth closed convex surfaces in H-3 and show that the solution remains convex and converges to a geodesic sphere exponentially in C-infinity topology. (C) 2022 Elsevier Inc. All rights reserved.
资助项目National Key R and D Program of China[2021YFA1001800] ; National Key R and D Program of China[2020YFA0713100] ; National Key R and D Program of China[KY0010000052] ; Uni-versity of Science and Technology of China
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000858842000001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60920]  
专题中国科学院数学与系统科学研究院
通讯作者Wei, Yong
作者单位1.Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
2.Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wei, Yong,Yang, Bo. Volume preserving flows for convex curves and surfaces in the hyperbolic space[J]. JOURNAL OF FUNCTIONAL ANALYSIS,2022,283(11):28.
APA Wei, Yong,&Yang, Bo.(2022).Volume preserving flows for convex curves and surfaces in the hyperbolic space.JOURNAL OF FUNCTIONAL ANALYSIS,283(11),28.
MLA Wei, Yong,et al."Volume preserving flows for convex curves and surfaces in the hyperbolic space".JOURNAL OF FUNCTIONAL ANALYSIS 283.11(2022):28.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。