Optimality conditions for homogeneous polynomial optimization on the unit sphere
文献类型:期刊论文
作者 | Huang, Lei1,2 |
刊名 | OPTIMIZATION LETTERS
![]() |
出版日期 | 2022-10-07 |
页码 | 8 |
关键词 | Homogeneous polynomials Optimization on the unit sphere Optimality conditions |
ISSN号 | 1862-4472 |
DOI | 10.1007/s11590-022-01940-3 |
英文摘要 | In this note, we prove that for homogeneous polynomial optimization on the sphere, if the objective f is generic in the input space, all feasible points satisfying the first order and second order necessary optimality conditions are local minimizers, which addresses an issue raised in the recent work by Lasserre (Optimization Letters, 2021). As a corollary, this implies that Lasserre's hierarchy has finite convergence when f is generic. |
资助项目 | National Natural Science Foundation of China[11688101] ; National Natural Science Foundation of China[12288201] |
WOS研究方向 | Operations Research & Management Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000864961200001 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/60932] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, Lei |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Lei. Optimality conditions for homogeneous polynomial optimization on the unit sphere[J]. OPTIMIZATION LETTERS,2022:8. |
APA | Huang, Lei.(2022).Optimality conditions for homogeneous polynomial optimization on the unit sphere.OPTIMIZATION LETTERS,8. |
MLA | Huang, Lei."Optimality conditions for homogeneous polynomial optimization on the unit sphere".OPTIMIZATION LETTERS (2022):8. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。