中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimality conditions for homogeneous polynomial optimization on the unit sphere

文献类型:期刊论文

作者Huang, Lei1,2
刊名OPTIMIZATION LETTERS
出版日期2022-10-07
页码8
关键词Homogeneous polynomials Optimization on the unit sphere Optimality conditions
ISSN号1862-4472
DOI10.1007/s11590-022-01940-3
英文摘要In this note, we prove that for homogeneous polynomial optimization on the sphere, if the objective f is generic in the input space, all feasible points satisfying the first order and second order necessary optimality conditions are local minimizers, which addresses an issue raised in the recent work by Lasserre (Optimization Letters, 2021). As a corollary, this implies that Lasserre's hierarchy has finite convergence when f is generic.
资助项目National Natural Science Foundation of China[11688101] ; National Natural Science Foundation of China[12288201]
WOS研究方向Operations Research & Management Science ; Mathematics
语种英语
WOS记录号WOS:000864961200001
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60932]  
专题中国科学院数学与系统科学研究院
通讯作者Huang, Lei
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Huang, Lei. Optimality conditions for homogeneous polynomial optimization on the unit sphere[J]. OPTIMIZATION LETTERS,2022:8.
APA Huang, Lei.(2022).Optimality conditions for homogeneous polynomial optimization on the unit sphere.OPTIMIZATION LETTERS,8.
MLA Huang, Lei."Optimality conditions for homogeneous polynomial optimization on the unit sphere".OPTIMIZATION LETTERS (2022):8.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。