中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Resolution of ideals associated to subspace arrangements

文献类型:期刊论文

作者Conca, Aldo1; Tsakiris, Manolis C.1,2
刊名ALGEBRA & NUMBER THEORY
出版日期2022
卷号16期号:5页码:1120-1140
关键词subspace arrangements free resolutions
ISSN号1937-0652
DOI10.2140/ant.2022.16.1121
英文摘要Let I-1, ... , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I-1, ... , In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals J(P), where P is a certain poset ideal associated to the underlying subspace arrangement.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000848196700004
出版者MATHEMATICAL SCIENCE PUBL
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61043]  
专题中国科学院数学与系统科学研究院
通讯作者Conca, Aldo
作者单位1.Univ Genoa, Dipartimento Matemat, Genoa, Italy
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Conca, Aldo,Tsakiris, Manolis C.. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2022,16(5):1120-1140.
APA Conca, Aldo,&Tsakiris, Manolis C..(2022).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY,16(5),1120-1140.
MLA Conca, Aldo,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY 16.5(2022):1120-1140.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。