Resolution of ideals associated to subspace arrangements
文献类型:期刊论文
作者 | Conca, Aldo1; Tsakiris, Manolis C.1,2 |
刊名 | ALGEBRA & NUMBER THEORY
![]() |
出版日期 | 2022 |
卷号 | 16期号:5页码:1120-1140 |
关键词 | subspace arrangements free resolutions |
ISSN号 | 1937-0652 |
DOI | 10.2140/ant.2022.16.1121 |
英文摘要 | Let I-1, ... , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I-1, ... , In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals J(P), where P is a certain poset ideal associated to the underlying subspace arrangement. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000848196700004 |
出版者 | MATHEMATICAL SCIENCE PUBL |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61043] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Conca, Aldo |
作者单位 | 1.Univ Genoa, Dipartimento Matemat, Genoa, Italy 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Conca, Aldo,Tsakiris, Manolis C.. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2022,16(5):1120-1140. |
APA | Conca, Aldo,&Tsakiris, Manolis C..(2022).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY,16(5),1120-1140. |
MLA | Conca, Aldo,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY 16.5(2022):1120-1140. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。