Local uniqueness of vortices for 2D steady Euler flow in a bounded domain
文献类型:期刊论文
| 作者 | Cao, Daomin1,2 ; Yu, Weilin1,2; Zou, Changjun3
|
| 刊名 | JOURNAL OF FUNCTIONAL ANALYSIS
![]() |
| 出版日期 | 2022-11-01 |
| 卷号 | 283期号:9页码:43 |
| 关键词 | The steady Euler equation Kirchhoff-Routh function Local uniqueness Nonlinear stability |
| ISSN号 | 0022-1236 |
| DOI | 10.1016/j.jfa.2022.109603 |
| 英文摘要 | We study the 2D Euler equation in a bounded simply -connected domain, and establish the local uniqueness of flow whose stream function psi(epsilon) satisfies ? -epsilon(2) delta psi epsilon = sigma(i=1) (k) 1(B delta) (z(0,i))(psi(epsilon) -mu(epsilon),i)gamma+, in omega,psi(epsilon) = 0, on & part;omega,with epsilon -> 0(+) the scale parameter of vortices, gamma is an element of (0, infinity), omega & SUB; R-2 a bounded simply connected Lipschitz domain, z(0),(i) is an element of omega the limiting location of i(th) vortex, and mu(epsilon,i )the flux constants unprescribed. Our proof is achieved by a detailed description of asymptotic behavior for psi(epsilon) and Pohozaev identity technique. For k = 1, we prove the nonlinear stability of corresponding vorticity in L(p )norm, provided that z(0,1) is a non-degenerate minimum point of Robin function. This stability result can be generalized to the case k >= 2, and (z(0,1), ..., z(0,k)) is an element of &omega(k) being a non-degenerate minimum point of the Kirchhoff-Routh function. |
| 资助项目 | NNSF of China[11831009] |
| WOS研究方向 | Mathematics |
| 语种 | 英语 |
| WOS记录号 | WOS:000830996400003 |
| 出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| 源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61178] ![]() |
| 专题 | 应用数学研究所 |
| 通讯作者 | Zou, Changjun |
| 作者单位 | 1.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China |
| 推荐引用方式 GB/T 7714 | Cao, Daomin,Yu, Weilin,Zou, Changjun. Local uniqueness of vortices for 2D steady Euler flow in a bounded domain[J]. JOURNAL OF FUNCTIONAL ANALYSIS,2022,283(9):43. |
| APA | Cao, Daomin,Yu, Weilin,&Zou, Changjun.(2022).Local uniqueness of vortices for 2D steady Euler flow in a bounded domain.JOURNAL OF FUNCTIONAL ANALYSIS,283(9),43. |
| MLA | Cao, Daomin,et al."Local uniqueness of vortices for 2D steady Euler flow in a bounded domain".JOURNAL OF FUNCTIONAL ANALYSIS 283.9(2022):43. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


