Asymptotic behaviour of global vortex rings
文献类型:期刊论文
作者 | Cao, Daomin1,2![]() |
刊名 | NONLINEARITY
![]() |
出版日期 | 2022-07-07 |
卷号 | 35期号:7页码:3680-3705 |
关键词 | incompressible Euler equations vortex ring variational method dcsingularization |
ISSN号 | 0951-7715 |
DOI | 10.1088/1361-6544/ac7497 |
英文摘要 | In this paper, we are concerned with nonlinear desingularization of steady vortex rings in R-3 with a general nonlinearity f. Using the improved vorticity method, we construct a family of steady vortex rings which constitute a desingularization of the classical circular vortex filament in the whole space. The requirements on f are very general, and it may not satisfy the Ambrosetti-Rabinowitz condition. Some qualitative and asymptotic properties are also established. |
资助项目 | NNSF of China[12001135] ; NNSF of China[12071098] ; NNSF of China[11831009] ; NNSF of China[12101045] ; Chinese Academy of Sciences[QYZDJ-SSW-SYS021] ; Beijing Institute of Technology Research Fund Program for Young Scholars[3170011182016] ; China Postdoctoral Science Foundation[2019M661261] ; China Postdoctoral Science Foundation[2021T140163] |
WOS研究方向 | Mathematics ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000817740600001 |
出版者 | IOP Publishing Ltd |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61220] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Wan, Jie |
作者单位 | 1.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China 4.Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China 5.Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China |
推荐引用方式 GB/T 7714 | Cao, Daomin,Wan, Jie,Wang, Guodong,et al. Asymptotic behaviour of global vortex rings[J]. NONLINEARITY,2022,35(7):3680-3705. |
APA | Cao, Daomin,Wan, Jie,Wang, Guodong,&Zhan, Weicheng.(2022).Asymptotic behaviour of global vortex rings.NONLINEARITY,35(7),3680-3705. |
MLA | Cao, Daomin,et al."Asymptotic behaviour of global vortex rings".NONLINEARITY 35.7(2022):3680-3705. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。