中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems

文献类型:期刊论文

作者Ding, Yanheng1; Yu, Yuanyang1,3; Dong, Xiaojing1,2
刊名ADVANCED NONLINEAR STUDIES
出版日期2022-07-02
卷号22期号:1页码:248-272
关键词Dirac-Klein-Gordon system semi-classical states multiplicity subcritical and critical nonlinearities
ISSN号1536-1365
DOI10.1515/ans-2022-0011
英文摘要In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.
资助项目National Natural Science Foundation of China[NSFC11871242]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000820410200001
出版者DE GRUYTER POLAND SP Z O O
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61226]  
专题中国科学院数学与系统科学研究院
通讯作者Dong, Xiaojing
作者单位1.Beijing Normal Univ, Sch Math Sci, MOE, Lab Math & Complex Syst, Beijing 100875, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
3.Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Ding, Yanheng,Yu, Yuanyang,Dong, Xiaojing. Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems[J]. ADVANCED NONLINEAR STUDIES,2022,22(1):248-272.
APA Ding, Yanheng,Yu, Yuanyang,&Dong, Xiaojing.(2022).Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems.ADVANCED NONLINEAR STUDIES,22(1),248-272.
MLA Ding, Yanheng,et al."Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems".ADVANCED NONLINEAR STUDIES 22.1(2022):248-272.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。