中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Curvature conditions for spatial isotropy

文献类型:期刊论文

作者Tzanavaris, Kostas1; Seoane, Pau Amaro2,3,4,5
刊名JOURNAL OF GEOMETRY AND PHYSICS
出版日期2022-08-01
卷号178页码:14
关键词General relativity Differential geometry Riemannian geometry
ISSN号0393-0440
DOI10.1016/j.geomphys.2022.104557
英文摘要In the context of mathematical cosmology, the study of necessary and sufficient conditions for a semi-Riemannian manifold to be a (generalized) Robertson-Walker space-time is important. In particular, it is a requirement for the development of initial data to reproduce or approximate the standard cosmological model. Usually these conditions involve the Einstein field equations, which change if one considers alternative theories of gravity or if the coupling matter fields change. Therefore, the derivation of conditions which do not depend on the field equations is an advantage. In this work we present a geometric derivation of such a condition. We require the existence of a unit vector field to distinguish at each point of space two (non-equal) sectional curvatures. This is equivalent for the Riemann tensor to adopt a specific form. Our geometrical approach yields a local isometry between the space and a Robertson-Walker space of the same dimension, curvature and metric tensor sign (the dimension of the largest subspace on which the metric tensor is negative definite). Remarkably, if the space is simply-connected, the isometry is global. Our result generalizes to a class of spaces of non-constant curvature the theorem that spaces of the same constant curvature, dimension and metric tensor sign must be locally isometric. Because we do not make any assumptions regarding field equations, matter fields or metric tensor sign, one can readily use this result to study cosmological models within alternative theories of gravity or with different matter fields. (C) 2022 Elsevier B.V. All rights reserved.
资助项目National Key R&D Program of China[2016YFA0400702] ; National Science Foun-dation of China[11721303] ; National Science Foun-dation of China[11873022] ; National Science Foun-dation of China[11991053]
WOS研究方向Mathematics ; Physics
语种英语
WOS记录号WOS:000806873000003
出版者ELSEVIER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61244]  
专题中国科学院数学与系统科学研究院
通讯作者Seoane, Pau Amaro
作者单位1.Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh, Scotland
2.Univ Politecn Valencia, Inst Multidisciplinary Math, Valencia, Spain
3.Max Planck Inst Extraterr Phys, Munich, Germany
4.Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
5.Kavli Inst Astron & Astrophys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tzanavaris, Kostas,Seoane, Pau Amaro. Curvature conditions for spatial isotropy[J]. JOURNAL OF GEOMETRY AND PHYSICS,2022,178:14.
APA Tzanavaris, Kostas,&Seoane, Pau Amaro.(2022).Curvature conditions for spatial isotropy.JOURNAL OF GEOMETRY AND PHYSICS,178,14.
MLA Tzanavaris, Kostas,et al."Curvature conditions for spatial isotropy".JOURNAL OF GEOMETRY AND PHYSICS 178(2022):14.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。