Cubic forms, anomaly cancellation and modularity
文献类型:期刊论文
作者 | Han, Fei1; Huang, Ruizhi2; Liu, Kefeng3,4; Zhang, Weiping5,6 |
刊名 | ADVANCES IN MATHEMATICS
![]() |
出版日期 | 2022-01-22 |
卷号 | 394页码:46 |
关键词 | Anomaly cancellation M-theory Cubic form Modular form Twisted Witten class Spin and spin(c) classes |
ISSN号 | 0001-8708 |
DOI | 10.1016/j.aim.2021.108023 |
英文摘要 | Recently Freed and Hopkins [11] proved that there is no parity anomaly in M-theory on pin(+) manifolds in the low-energy field theory approximation, and they also developed an algebraic theory of cubic forms. Earlier Witten [33] proved the anomaly cancellation for spin manifolds by introducing the E-8-bundle technique. Motivated by the cubic forms and the anomaly cancellation formulas of Witten-Freed-Hopkins, we give some new cubic forms on spin, spinc(e), spin(omega 2) and orientable 12-manifolds respectively. We relate them to eta-invariants when the manifolds are with boundary, and mod 2 indices on 10 dimensional characteristic submanifolds when the manifolds are spinc or spin(omega 2). Our method of producing these cubic forms is a combination of (generalized) Witten classes and the character of the basic representation of affine E-8. (C) 2021 Elsevier Inc. All rights reserved. |
资助项目 | National University of Singapore[AcRF R-146-000-263-114] ; Postdoctoral International Exchange Program for Incoming Postdoctoral Students under Chinese Postdoctoral Council ; Chinese Post-doctoral Science Foundation ; Chen Jingrun Future Star Program of AMSS ; Chinese Postdoctoral Science Foundation[2018M631605] ; Chinese Postdoctoral Science Foundation[2019T120145] ; National Natural Science Foundation of China[11801544] ; National Natural Science Foundation of China[11688101] ; NSFC[11931007] ; Nankai Zhide Foundation ; NSF |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000792493600020 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61354] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, Ruizhi |
作者单位 | 1.Natl Univ Singapore, Dept Math, Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore 2.Chinese Acad Sci, Inst Math & Syst Sci, Beijing 100190, Peoples R China 3.Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA 4.Chongqing Univ Technol, Math Sci Res Ctr, Chongqing 400054, Peoples R China 5.Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China 6.Nankai Univ, LPMC, Tianjin 300071, Peoples R China |
推荐引用方式 GB/T 7714 | Han, Fei,Huang, Ruizhi,Liu, Kefeng,et al. Cubic forms, anomaly cancellation and modularity[J]. ADVANCES IN MATHEMATICS,2022,394:46. |
APA | Han, Fei,Huang, Ruizhi,Liu, Kefeng,&Zhang, Weiping.(2022).Cubic forms, anomaly cancellation and modularity.ADVANCES IN MATHEMATICS,394,46. |
MLA | Han, Fei,et al."Cubic forms, anomaly cancellation and modularity".ADVANCES IN MATHEMATICS 394(2022):46. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。