Solution to a Forcible Version of a Graphic Sequence Problem
文献类型:期刊论文
作者 | Cai, Mao-cheng1; Kang, Liying2 |
刊名 | GRAPHS AND COMBINATORICS
![]() |
出版日期 | 2022-06-01 |
卷号 | 38期号:3页码:9 |
关键词 | Graph Degree sequence Niessen's problem Forcible version |
ISSN号 | 0911-0119 |
DOI | 10.1007/s00373-022-02501-2 |
英文摘要 | Let A(n) = (a(1), a(2), ..., a(n)) and B-n = (b(1), b(2), ..., b(n)) be nonnegative integer sequences with A(n) <= B-n. The purpose of this note is to give a good characterization such that every integer sequence pi = (d(1), d(2), ... d(n)) with even sum and A(n) <= pi <= B-n is graphic. This solves a forcible version of problem posed by Niessen and generalizes the Erdos-Gallai theorem. |
资助项目 | National Natural Science Foundation of China[11871329] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000797766100002 |
出版者 | SPRINGER JAPAN KK |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61390] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Kang, Liying |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China |
推荐引用方式 GB/T 7714 | Cai, Mao-cheng,Kang, Liying. Solution to a Forcible Version of a Graphic Sequence Problem[J]. GRAPHS AND COMBINATORICS,2022,38(3):9. |
APA | Cai, Mao-cheng,&Kang, Liying.(2022).Solution to a Forcible Version of a Graphic Sequence Problem.GRAPHS AND COMBINATORICS,38(3),9. |
MLA | Cai, Mao-cheng,et al."Solution to a Forcible Version of a Graphic Sequence Problem".GRAPHS AND COMBINATORICS 38.3(2022):9. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。