中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dynamics on the number of prime divisors for additive arithmetic semigroups

文献类型:期刊论文

作者Wang, Biao
刊名FINITE FIELDS AND THEIR APPLICATIONS
出版日期2022-08-01
卷号81页码:28
关键词Prime Number Theorem Liouville function Largest prime factors Uniquely ergodic Uniform distribution
ISSN号1071-5797
DOI10.1016/j.ffa.2022.102029
英文摘要In 2020, Bergelson and Richter gave a dynamical generalization of the classical Prime Number Theorem, which has been generalized by Loyd in a disjoint form with the ErdosKac Theorem. These generalizations reveal the rich ergodic properties of the number of prime divisors of integers. In this article, we show a new generalization of Bergelson and Richter's Theorem in a disjoint form with the distribution of the largest prime factors of integers. Then following Bergelson and Richter's techniques, we will show the analogues of all of these results for the arithmetic semigroups arising from finite fields as well. (c) 2022 Elsevier Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000805452200007
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61478]  
专题中国科学院数学与系统科学研究院
通讯作者Wang, Biao
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Biao. Dynamics on the number of prime divisors for additive arithmetic semigroups[J]. FINITE FIELDS AND THEIR APPLICATIONS,2022,81:28.
APA Wang, Biao.(2022).Dynamics on the number of prime divisors for additive arithmetic semigroups.FINITE FIELDS AND THEIR APPLICATIONS,81,28.
MLA Wang, Biao."Dynamics on the number of prime divisors for additive arithmetic semigroups".FINITE FIELDS AND THEIR APPLICATIONS 81(2022):28.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。