Dynamics on the number of prime divisors for additive arithmetic semigroups
文献类型:期刊论文
作者 | Wang, Biao |
刊名 | FINITE FIELDS AND THEIR APPLICATIONS
![]() |
出版日期 | 2022-08-01 |
卷号 | 81页码:28 |
关键词 | Prime Number Theorem Liouville function Largest prime factors Uniquely ergodic Uniform distribution |
ISSN号 | 1071-5797 |
DOI | 10.1016/j.ffa.2022.102029 |
英文摘要 | In 2020, Bergelson and Richter gave a dynamical generalization of the classical Prime Number Theorem, which has been generalized by Loyd in a disjoint form with the ErdosKac Theorem. These generalizations reveal the rich ergodic properties of the number of prime divisors of integers. In this article, we show a new generalization of Bergelson and Richter's Theorem in a disjoint form with the distribution of the largest prime factors of integers. Then following Bergelson and Richter's techniques, we will show the analogues of all of these results for the arithmetic semigroups arising from finite fields as well. (c) 2022 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000805452200007 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61478] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wang, Biao |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Biao. Dynamics on the number of prime divisors for additive arithmetic semigroups[J]. FINITE FIELDS AND THEIR APPLICATIONS,2022,81:28. |
APA | Wang, Biao.(2022).Dynamics on the number of prime divisors for additive arithmetic semigroups.FINITE FIELDS AND THEIR APPLICATIONS,81,28. |
MLA | Wang, Biao."Dynamics on the number of prime divisors for additive arithmetic semigroups".FINITE FIELDS AND THEIR APPLICATIONS 81(2022):28. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。