中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Large-stepsize integrators for charged-particle dynamics over multiple time scales

文献类型:期刊论文

作者Hairer, Ernst1; Lubich, Christian2; Shi, Yanyan2,3,4
刊名NUMERISCHE MATHEMATIK
出版日期2022-06-08
页码33
关键词Charged particle Strong magnetic field Boris algorithm Variational integrator Filtered variational integrator Modulated Fourier expansion Long-term behaviour
ISSN号0029-599X
DOI10.1007/s00211-022-01298-9
英文摘要The Boris algorithm, a closely related variational integrator and a newly proposed filtered variational integrator are studied when they are used to numerically integrate the equations of motion of a charged particle in a mildly non-uniform strong magnetic field, taking step sizes that are much larger than the period of the Larmor rotations. For the Boris algorithm and the standard (unfiltered) variational integrator, satisfactory behaviour is only obtained when the component of the initial velocity orthogonal to the magnetic field is filtered out. The particle motion shows varying behaviour over multiple time scales: fast gyrorotation, guiding centre motion, slow perpendicular drift, near-conservation of the magnetic moment over very long times and conservation of energy for all times. Using modulated Fourier expansions of the exact and numerical solutions, it is analysed to which extent this behaviour is reproduced by the three numerical integrators used with large step sizes that do not resolve the fast gyrorotations.
资助项目Swiss National Science Foundation[200020_192129] ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[258734477 - SFB 1173] ; University of the Chinese Academy of Sciences (UCAS)
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000807944200001
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61487]  
专题中国科学院数学与系统科学研究院
通讯作者Lubich, Christian
作者单位1.Univ Geneva, Dept Math, CH-1211 Geneva 24, Switzerland
2.Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hairer, Ernst,Lubich, Christian,Shi, Yanyan. Large-stepsize integrators for charged-particle dynamics over multiple time scales[J]. NUMERISCHE MATHEMATIK,2022:33.
APA Hairer, Ernst,Lubich, Christian,&Shi, Yanyan.(2022).Large-stepsize integrators for charged-particle dynamics over multiple time scales.NUMERISCHE MATHEMATIK,33.
MLA Hairer, Ernst,et al."Large-stepsize integrators for charged-particle dynamics over multiple time scales".NUMERISCHE MATHEMATIK (2022):33.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。