Large-stepsize integrators for charged-particle dynamics over multiple time scales
文献类型:期刊论文
作者 | Hairer, Ernst1; Lubich, Christian2; Shi, Yanyan2,3,4 |
刊名 | NUMERISCHE MATHEMATIK
![]() |
出版日期 | 2022-06-08 |
页码 | 33 |
关键词 | Charged particle Strong magnetic field Boris algorithm Variational integrator Filtered variational integrator Modulated Fourier expansion Long-term behaviour |
ISSN号 | 0029-599X |
DOI | 10.1007/s00211-022-01298-9 |
英文摘要 | The Boris algorithm, a closely related variational integrator and a newly proposed filtered variational integrator are studied when they are used to numerically integrate the equations of motion of a charged particle in a mildly non-uniform strong magnetic field, taking step sizes that are much larger than the period of the Larmor rotations. For the Boris algorithm and the standard (unfiltered) variational integrator, satisfactory behaviour is only obtained when the component of the initial velocity orthogonal to the magnetic field is filtered out. The particle motion shows varying behaviour over multiple time scales: fast gyrorotation, guiding centre motion, slow perpendicular drift, near-conservation of the magnetic moment over very long times and conservation of energy for all times. Using modulated Fourier expansions of the exact and numerical solutions, it is analysed to which extent this behaviour is reproduced by the three numerical integrators used with large step sizes that do not resolve the fast gyrorotations. |
资助项目 | Swiss National Science Foundation[200020_192129] ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[258734477 - SFB 1173] ; University of the Chinese Academy of Sciences (UCAS) |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000807944200001 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/61487] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Lubich, Christian |
作者单位 | 1.Univ Geneva, Dept Math, CH-1211 Geneva 24, Switzerland 2.Univ Tubingen, Math Inst, D-72076 Tubingen, Germany 3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hairer, Ernst,Lubich, Christian,Shi, Yanyan. Large-stepsize integrators for charged-particle dynamics over multiple time scales[J]. NUMERISCHE MATHEMATIK,2022:33. |
APA | Hairer, Ernst,Lubich, Christian,&Shi, Yanyan.(2022).Large-stepsize integrators for charged-particle dynamics over multiple time scales.NUMERISCHE MATHEMATIK,33. |
MLA | Hairer, Ernst,et al."Large-stepsize integrators for charged-particle dynamics over multiple time scales".NUMERISCHE MATHEMATIK (2022):33. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。