中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid

Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models

文献类型:期刊论文

作者Guo, Ling2; Wu, Hao3; Zhou, Tao1
刊名JOURNAL OF COMPUTATIONAL PHYSICS
出版日期2022-07-15
卷号461页码:18
关键词Data -driven modeling Normalizing flows Uncertainty quantification Random fields
ISSN号0021-9991
DOI10.1016/j.jcp.2022.111202
英文摘要We introduce in this work the normalizing field flows (NFF) for learning random fields from scattered measurements. More precisely, we construct a bijective transformation (a normalizing flow characterizing by neural networks) between a Gaussian random field with the Karhunen-Loeve (KL) expansion structure and the target stochastic field, where the KL expansion coefficients and the invertible networks are trained by maximizing the sum of the log-likelihood on scattered measurements. This NFF model can be used to solve data-driven forward, inverse, and mixed forward/inverse stochastic partial differential equations in a unified framework. We demonstrate the capability of the proposed NFF model for learning non-Gaussian processes and different types of stochastic partial differential equations. (C)& nbsp;2022 Elsevier Inc. All rights reserved.
资助项目NSF of China[12071301] ; NSF of China[11671265] ; NSF of China[11822111] ; NSF of China[2020YFA0712000] ; NSF of China[XDA25010404] ; Shanghai Municipal Science and Technology Commission[12171367] ; Shanghai Municipal Science and Technology Commission[11688101] ; Shanghai Municipal Science and Technology Commission[20JC1412500] ; Shanghai Municipal Science and Technology Commission[20JC1413500] ; National Key R&D Program of China[21JC1403700] ; Strategic Priority Research Program of Chinese Academy of Sciences[2021SHZDZX0100]
WOS研究方向Computer Science ; Physics
语种英语
WOS记录号WOS:000802129600002
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/61517]  
专题中国科学院数学与系统科学研究院
通讯作者Wu, Hao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing, Peoples R China
2.Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
3.Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Guo, Ling,Wu, Hao,Zhou, Tao.

Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models

[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,461:18.
APA Guo, Ling,Wu, Hao,&Zhou, Tao.(2022).

Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models

.JOURNAL OF COMPUTATIONAL PHYSICS,461,18.
MLA Guo, Ling,et al."

Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models

".JOURNAL OF COMPUTATIONAL PHYSICS 461(2022):18.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。