Forecasting residential electricity consumption using a hybrid machine learning model with online search data
文献类型:期刊论文
| 作者 | Gao Feng; Chi Hong; Shao Xueyan |
| 刊名 | Applied Energy
![]() |
| 出版日期 | 2021 |
| 期号 | 300页码:1-13 |
| 关键词 | Residential electricity consumption forecasting Online search data Extreme learning machine Jaya |
| DOI | 10.1016/j.apenergy.2021.117393 |
| 语种 | 英语 |
| 源URL | [http://ir.casisd.cn/handle/190111/11522] ![]() |
| 专题 | 系统分析与管理研究所 |
| 通讯作者 | Shao Xueyan |
| 作者单位 | 1.Institutes of Science and Development, Chinese Academy of Sciences, China 2.University of Chinese Academy of Sciences, China |
| 推荐引用方式 GB/T 7714 | Gao Feng,Chi Hong,Shao Xueyan. Forecasting residential electricity consumption using a hybrid machine learning model with online search data[J]. Applied Energy,2021(300):1-13. |
| APA | Gao Feng,Chi Hong,&Shao Xueyan.(2021).Forecasting residential electricity consumption using a hybrid machine learning model with online search data.Applied Energy(300),1-13. |
| MLA | Gao Feng,et al."Forecasting residential electricity consumption using a hybrid machine learning model with online search data".Applied Energy .300(2021):1-13. |
入库方式: OAI收割
来源:科技战略咨询研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

