Forecasting residential electricity consumption using a hybrid machine learning model with online search data
文献类型:期刊论文
作者 | Gao Feng; Chi Hong; Shao Xueyan |
刊名 | Applied Energy
![]() |
出版日期 | 2021 |
期号 | 300页码:1-13 |
关键词 | Residential electricity consumption forecasting Online search data Extreme learning machine Jaya |
DOI | 10.1016/j.apenergy.2021.117393 |
语种 | 英语 |
源URL | [http://ir.casisd.cn/handle/190111/11522] ![]() |
专题 | 系统分析与管理研究所 |
通讯作者 | Shao Xueyan |
作者单位 | 1.Institutes of Science and Development, Chinese Academy of Sciences, China 2.University of Chinese Academy of Sciences, China |
推荐引用方式 GB/T 7714 | Gao Feng,Chi Hong,Shao Xueyan. Forecasting residential electricity consumption using a hybrid machine learning model with online search data[J]. Applied Energy,2021(300):1-13. |
APA | Gao Feng,Chi Hong,&Shao Xueyan.(2021).Forecasting residential electricity consumption using a hybrid machine learning model with online search data.Applied Energy(300),1-13. |
MLA | Gao Feng,et al."Forecasting residential electricity consumption using a hybrid machine learning model with online search data".Applied Energy .300(2021):1-13. |
入库方式: OAI收割
来源:科技战略咨询研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。