中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Forecasting residential electricity consumption using a hybrid machine learning model with online search data

文献类型:期刊论文

作者Gao Feng; Chi Hong; Shao Xueyan
刊名Applied Energy
出版日期2021
期号300页码:1-13
关键词Residential electricity consumption forecasting Online search data Extreme learning machine Jaya
DOI10.1016/j.apenergy.2021.117393
语种英语
源URL[http://ir.casisd.cn/handle/190111/11522]  
专题系统分析与管理研究所
通讯作者Shao Xueyan
作者单位1.Institutes of Science and Development, Chinese Academy of Sciences, China
2.University of Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Gao Feng,Chi Hong,Shao Xueyan. Forecasting residential electricity consumption using a hybrid machine learning model with online search data[J]. Applied Energy,2021(300):1-13.
APA Gao Feng,Chi Hong,&Shao Xueyan.(2021).Forecasting residential electricity consumption using a hybrid machine learning model with online search data.Applied Energy(300),1-13.
MLA Gao Feng,et al."Forecasting residential electricity consumption using a hybrid machine learning model with online search data".Applied Energy .300(2021):1-13.

入库方式: OAI收割

来源:科技战略咨询研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。