Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications
文献类型:期刊论文
作者 | Hu, Tianyu2; Sun, Xiliang2; Su, Yanjun2; Guan, Hongcan2; Sun, Qianhui2; Kelly, Maggi3,4; Guo, Qinghua1![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2021 |
卷号 | 13期号:1 |
关键词 | unmanned aerial vehicle (UAV) lidar DJI Livox low cost forest inventory |
DOI | 10.3390/rs13010077 |
文献子类 | Article |
英文摘要 | Accurate and repeated forest inventory data are critical to understand forest ecosystem processes and manage forest resources. In recent years, unmanned aerial vehicle (UAV)-borne light detection and ranging (lidar) systems have demonstrated effectiveness at deriving forest inventory attributes. However, their high cost has largely prevented them from being used in large-scale forest applications. Here, we developed a very low-cost UAV lidar system that integrates a recently emerged DJI Livox MID40 laser scanner (similar to$600 USD) and evaluated its capability in estimating both individual tree-level (i.e., tree height) and plot-level forest inventory attributes (i.e., canopy cover, gap fraction, and leaf area index (LAI)). Moreover, a comprehensive comparison was conducted between the developed DJI Livox system and four other UAV lidar systems equipped with high-end laser scanners (i.e., RIEGL VUX-1 UAV, RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE). Using these instruments, we surveyed a coniferous forest site and a broadleaved forest site, with tree densities ranging from 500 trees/ha to 3000 trees/ha, with 52 UAV flights at different flying height and speed combinations. The developed DJI Livox MID40 system effectively captured the upper canopy structure and terrain surface information at both forest sites. The estimated individual tree height was highly correlated with field measurements (coniferous site: R-2 = 0.96, root mean squared error/RMSE = 0.59 m; broadleaved site: R-2 = 0.70, RMSE = 1.63 m). The plot-level estimates of canopy cover, gap fraction, and LAI corresponded well with those derived from the high-end RIEGL VUX-1 UAV system but tended to have systematic biases in areas with medium to high canopy densities. Overall, the DJI Livox MID40 system performed comparably to the RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE systems in the coniferous site and to the Velodyne Puck LITE system in the broadleaved forest. Despite its apparent weaknesses of limited sensitivity to low-intensity returns and narrow field of view, we believe that the very low-cost system developed by this study can largely broaden the potential use of UAV lidar in forest inventory applications. This study also provides guidance for the selection of the appropriate UAV lidar system and flight specifications for forest research and management. |
学科主题 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
出版地 | BASEL |
电子版国际标准刊号 | 2072-4292 |
WOS关键词 | STRUCTURE-FROM-MOTION ; SAMPLING DENSITY ; AIRBORNE LIDAR ; CARBON STOCKS ; BIOMASS ; CALIBRATION ; INVENTORY ; RECOVERY ; IMAGERY ; TREES |
WOS研究方向 | Science Citation Index Expanded (SCI-EXPANDED) |
语种 | 英语 |
WOS记录号 | WOS:000606160400001 |
出版者 | MDPI |
资助机构 | National Key R&D Program of China [2017YFC0503905] ; National Natural Science Foundation of China [41901358, 41871332, 31971575] ; Beijing Municipal Science and Technology Project [Z191100007419004] ; Chinese Academy of Sciences President's International Fellowship Initiative [2019VTA0007] |
源URL | [http://ir.ibcas.ac.cn/handle/2S10CLM1/26719] ![]() |
专题 | 植被与环境变化国家重点实验室 |
作者单位 | 1.Univ Calif Berkeley, Div Agr & Nat Resources, Berkeley, CA 94720 USA 2.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China 3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 4.Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA 5.Peking Univ, Coll Urban & Environm Sci, Inst Ecol, Beijing 100871, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Tianyu,Sun, Xiliang,Su, Yanjun,et al. Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications[J]. REMOTE SENSING,2021,13(1). |
APA | Hu, Tianyu.,Sun, Xiliang.,Su, Yanjun.,Guan, Hongcan.,Sun, Qianhui.,...&Guo, Qinghua.(2021).Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications.REMOTE SENSING,13(1). |
MLA | Hu, Tianyu,et al."Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications".REMOTE SENSING 13.1(2021). |
入库方式: OAI收割
来源:植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。