中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep unfolding multi-scale regularizer network for image denoising

文献类型:期刊论文

作者Xu, Jingzhao3; Yuan, Mengke1,2; Yan, Dong-Ming1,2; Wu, Tieru3
刊名COMPUTATIONAL VISUAL MEDIA
出版日期2023-06-01
卷号9期号:2页码:335-350
关键词image denoising deep unfolding network multi-scale regularizer deep learning
ISSN号2096-0433
DOI10.1007/s41095-022-0277-5
通讯作者Wu, Tieru(wutr@jlu.edu.cn)
英文摘要Existing deep unfolding methods unroll an optimization algorithm with a fixed number of steps, and utilize convolutional neural networks (CNNs) to learn data-driven priors. However, their performance is limited for two main reasons. Firstly, priors learned in deep feature space need to be converted to the image space at each iteration step, which limits the depth of CNNs and prevents CNNs from exploiting contextual information. Secondly, existing methods only learn deep priors at the single full-resolution scale, so ignore the benefits of multi-scale context in dealing with high level noise. To address these issues, we explicitly consider the image denoising process in the deep feature space and propose the deep unfolding multi-scale regularizer network (DUMRN) for image denoising. The core of DUMRN is the feature-based denoising module (FDM) that directly removes noise in the deep feature space. In each FDM, we construct a multi-scale regularizer block to learn deep prior information from multi-resolution features. We build the DUMRN by stacking a sequence of FDMs and train it in an end-to-end manner. Experimental results on synthetic and real-world benchmarks demonstrate that DUMRN performs favorably compared to state-of-the-art methods.
WOS关键词NONLOCAL IMAGE ; SPARSE
资助项目National Key R&D Program of China ; National Nature Science Foundation of China ; [2020YFA0714101] ; [61872162] ; [62102414] ; [62172415] ; [52175493]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000907570700008
出版者SPRINGERNATURE
资助机构National Key R&D Program of China ; National Nature Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/51120]  
专题多模态人工智能系统全国重点实验室
通讯作者Wu, Tieru
作者单位1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Jilin Univ, Sch Math, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jingzhao,Yuan, Mengke,Yan, Dong-Ming,et al. Deep unfolding multi-scale regularizer network for image denoising[J]. COMPUTATIONAL VISUAL MEDIA,2023,9(2):335-350.
APA Xu, Jingzhao,Yuan, Mengke,Yan, Dong-Ming,&Wu, Tieru.(2023).Deep unfolding multi-scale regularizer network for image denoising.COMPUTATIONAL VISUAL MEDIA,9(2),335-350.
MLA Xu, Jingzhao,et al."Deep unfolding multi-scale regularizer network for image denoising".COMPUTATIONAL VISUAL MEDIA 9.2(2023):335-350.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。