Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si
文献类型:期刊论文
作者 | Shang, Runlong1; Qian, Guoyu2,3; Wang, Zhi2,3; Zhou, Lu2; Sheng, Zhilin1 |
刊名 | METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE
![]() |
出版日期 | 2022-05-27 |
页码 | 18 |
ISSN号 | 1073-5615 |
DOI | 10.1007/s11663-022-02558-7 |
英文摘要 | In order to improve the preparation efficiency of high-purity silicon, a new method of rotary segregation purification has been developed to prepare polysilicon. Numerical simulation based on ANSYS19.0 software and water model experiments were used to study the distribution of flow field and optimize the impurity removal process. A numerical simulation model suitable for rotating interface is established. The simulation result is in good agreement with the water model experiment. A vortex flow is found in the middle of the mold when the mold insertion depth is 90 mm. The vortex is conducive to the thinning of the impurity enrichment layer at the solid-liquid interface. With the mold insertion depth increases from 90 to 170 mm, two vortex flows appear in the middle and bottom of the mold, respectively. Moreover, setting the mold rotation rate at 100 rpm can contribute to a more stable flow field and a higher melt flow velocity. When the diffusion layer thickness is less than 0.1 mm, the impurity segregation coefficient can approach close to its equilibrium segregation coefficient, indicating that impurity segregation be effectively enhanced by increasing the rotation rate of mold, strengthening the effect of solidification rate and increasing the rotational speed. Industrial tests were carried out at the 100 kg level. The result shows that the rotary segregation method and equipment can achieve the removal of very low impurity in silicon (99.999 pct), and SoG-Si (99.9999 pct) was obtained. This method provides a new way for silicon purification, and it is believed that better results can be obtained through continuous improvement. |
WOS关键词 | CFD SIMULATION ; DIRECTIONAL SOLIDIFICATION ; PIV MEASUREMENT ; MAGNETIC-FIELD ; STIRRED TANKS ; GAS-LIQUID ; ALLOY ; SEPARATION ; REMOVAL ; MELT |
资助项目 | National Key R&D Program of China[2018YFC1901801] ; National Natural Science Foundation of China[51934006] ; National Natural Science Foundation of China[U1902219] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
WOS记录号 | WOS:000805488100003 |
出版者 | SPRINGER |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China |
源URL | [http://ir.ipe.ac.cn/handle/122111/53710] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | Qian, Guoyu |
作者单位 | 1.North Minzu Univ, 204 Wenchang North St, Yinchuan 750001, Ningxia, Peoples R China 2.Chinese Acad Sci, Natl Engn Res Ctr Green Recycling Strateg Met Res, Inst Proc Engn, 1 North 2nd St, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Shang, Runlong,Qian, Guoyu,Wang, Zhi,et al. Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE,2022:18. |
APA | Shang, Runlong,Qian, Guoyu,Wang, Zhi,Zhou, Lu,&Sheng, Zhilin.(2022).Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si.METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE,18. |
MLA | Shang, Runlong,et al."Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si".METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE (2022):18. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。