中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for high-rate solid-state batteries

文献类型:期刊论文

作者Li, Jin1,2,3; Zhang, Haitao1,2,3,4; Cui, Yingyue1,2,3; Da, Haoran1,2,3; Cai, Yingjun1,3; Zhang, Suojiang1,3
刊名NANO ENERGY
出版日期2022-11-01
卷号102页码:11
关键词Solid-state electrolytes Interfacial gradient layers Lithium -ion batteries Enhanced kinetics Fluoroaromatic compounds
ISSN号2211-2855
DOI10.1016/j.nanoen.2022.107716
英文摘要The stability of the interfacial layers depends mainly on the composition and distribution of the decomposition products from solid-state electrolytes (SSEs) in lithium metal batteries. Therefore, the design of SSEs becomes an attractive way to construct a homogeneous stable interfacial layer. Herein, pentafluorostyrene (PFS) as a block is used to generate robust interfacial layers for solid-state batteries. Meanwhile, PFS facilitates the dissociation of lithium salts to produce more free Li-ions which can enhance the ionic conductivity from the results of 7Li solid-state NMR spectra, density functional theory, and molecular dynamics calculations. Subsequently, XPS depth etching and TOF-SIMS characterizations together show that the gradient interfacial layer is composed of a rich C-F bond surface layer and a rich-LiF & Li3N bottom layer, enabling rapid transport and uniform deposition of lithium ions. As a result, the Li/Li symmetric cell can achieve a stable ultra-long cycle time of more than 3000 h at 0.2 mA cm(-2) and a critical current density of 2.4 mA cm(-2). The as-prepared SSE exhibits a high ionic conductivity of 4.3 x 10(-4) S cm(- 1) at 25 C and remarkable cycling stability at 0 C and -20 ?. Moreover, the lithium metal batteries based on as-prepared SSEs deliver high-rate (2 C) capability and high-voltage (NCM811) stability at room temperatures.
WOS关键词LI-METAL BATTERIES ; POLYMER ELECTROLYTE ; HIGH-VOLTAGE ; ANODES ; STRATEGIES ; PROGRESS
资助项目National Key Researchand Development Program of China[2019YFA0705602] ; Science and Technology Service Network Initiative program of CAS[KFJ-STS-QYZD-2021-02-002] ; Key Science and Technology Special Project of Henan Province[202102210106] ; Zhengzhou major Science and technology projects[2019CXZX0074]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
WOS记录号WOS:000857389300001
出版者ELSEVIER
资助机构National Key Researchand Development Program of China ; Science and Technology Service Network Initiative program of CAS ; Key Science and Technology Special Project of Henan Province ; Zhengzhou major Science and technology projects
源URL[http://ir.ipe.ac.cn/handle/122111/54741]  
专题中国科学院过程工程研究所
通讯作者Cai, Yingjun; Zhang, Suojiang
作者单位1.Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
4.Zhengzhou Inst Emerging Ind Technol, Zhengzhou Key Lab Energy Storage Sci & Technol, Zhengzhou 450003, Peoples R China
推荐引用方式
GB/T 7714
Li, Jin,Zhang, Haitao,Cui, Yingyue,et al. Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for high-rate solid-state batteries[J]. NANO ENERGY,2022,102:11.
APA Li, Jin,Zhang, Haitao,Cui, Yingyue,Da, Haoran,Cai, Yingjun,&Zhang, Suojiang.(2022).Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for high-rate solid-state batteries.NANO ENERGY,102,11.
MLA Li, Jin,et al."Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for high-rate solid-state batteries".NANO ENERGY 102(2022):11.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。