中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SSAU-Net: A Spectral-Spatial Attention-Based U-Net for Hyperspectral Image Fusion

文献类型:期刊论文

作者Liu, Shuaiqi3,4; Liu, Siyuan2; Zhang, Shichong2; Li, Bing3; Hu, Weiming3; Zhang, Yu-Dong1
刊名IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
出版日期2022
卷号60页码:16
关键词Feature extraction Matrix decomposition Image fusion Hyperspectral imaging Spatial resolution Tensors Image reconstruction Deep learning hyperspectral image (HSI) image fusion multispectral image (MSI) spectral-spatial attention
ISSN号0196-2892
DOI10.1109/TGRS.2022.3217168
通讯作者Liu, Siyuan(syliu_hbu@163.com) ; Hu, Weiming(wmhu@nlpr.ia.ac.cn)
英文摘要Compared with the traditional remote sensing image, there is a large amount of spectral information in the hyperspectral image (HSI), which makes HSI better reflect the actual condition of surface features. However, due to the limitations of imaging conditions, HSI tends to have a lower spatial resolution. In order to overcome this issue, we propose a spectral-spatial attention-based U-Net named SSAU-Net for HSI and multispectral image (MSI) fusion. The SSAU-Net constructs a spectral-spatial attention module by a coordinate-attention (CA) module and an efficient pyramid split attention (EPSA) module, which can enhance the image's spectral information and spatial information. Meanwhile, the proposed network fully extracts the shallow and deep features of the images and finally generates high-resolution (HR) HSIs. Compared with the state-of-the-art HSI-MSI fusion methods, the experimental results verify that the proposed method has a better subjective and objective fusion effect.
WOS关键词FACTORIZATION
资助项目National Natural Science Foundation of China[62172139] ; National Natural Science Foundation of China[U1936204] ; National Natural Science Foundation of China[U1803119] ; National Key Research and Development Plan[2020AAA0106800] ; Natural Science Foundation of Hebei Province[F2022201055] ; Science Research Project of Hebei Province[BJ2020030] ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR)[202200007] ; Natural Science Interdisciplinary Research Program of Hebei University[DXK202102] ; Research Project of Hebei University Intelligent Financial Application Technology (HUIFAT) Research and Development Center[XGZJ2022022] ; [2022M713361]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000882005800009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; National Key Research and Development Plan ; Natural Science Foundation of Hebei Province ; Science Research Project of Hebei Province ; Open Project Program of the National Laboratory of Pattern Recognition (NLPR) ; Natural Science Interdisciplinary Research Program of Hebei University ; Research Project of Hebei University Intelligent Financial Application Technology (HUIFAT) Research and Development Center
源URL[http://ir.ia.ac.cn/handle/173211/51251]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
通讯作者Liu, Siyuan; Hu, Weiming
作者单位1.Univ Leicester, Sch Comp & Math, Leicester LE1 7RH, Leics, England
2.Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China
4.Hebei Univ, Coll Elect & Informat Engn, Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071002, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shuaiqi,Liu, Siyuan,Zhang, Shichong,et al. SSAU-Net: A Spectral-Spatial Attention-Based U-Net for Hyperspectral Image Fusion[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:16.
APA Liu, Shuaiqi,Liu, Siyuan,Zhang, Shichong,Li, Bing,Hu, Weiming,&Zhang, Yu-Dong.(2022).SSAU-Net: A Spectral-Spatial Attention-Based U-Net for Hyperspectral Image Fusion.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,16.
MLA Liu, Shuaiqi,et al."SSAU-Net: A Spectral-Spatial Attention-Based U-Net for Hyperspectral Image Fusion".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):16.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。