3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition
文献类型:期刊论文
作者 | Liu, Shuaiqi5,6; Wang, Xu4; Zhao, Ling4; Li, Bing5![]() ![]() |
刊名 | IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
![]() |
出版日期 | 2022-11-01 |
卷号 | 26期号:11页码:5321-5331 |
关键词 | Electroencephalography Feature extraction Emotion recognition Convolution Brain modeling Deep learning Neural networks 3D convolution attention neural network dual attention learning EEG emotion recognition spatio-temporal feature |
ISSN号 | 2168-2194 |
DOI | 10.1109/JBHI.2021.3083525 |
通讯作者 | Zhao, Ling(lingzhao_hbu@163.com) ; Zhang, Yu-Dong(yudongzhang@ieee.org) |
英文摘要 | Since electroencephalogram (EEG) signals can truly reflect human emotional state, emotion recognition based on EEG has turned into a critical branch in the field of artificial intelligence. Aiming at the disparity of EEG signals in various emotional states, we propose a new deep learning model named three-dimension convolution attention neural network (3DCANN) for EEG emotion recognition in this paper. The 3DCANN model is composed of spatio-temporal feature extraction module and EEG channel attention weight learning module, which can extract the dynamic relation well among multi-channel EEG signals and the internal spatial relation of multi-channel EEG signals during continuous period time. In this model, the spatio-temporal features are fused with the weights of dual attention learning, and the fused features are input into the softmax classifier for emotion classification. In addition, we utilize SJTU Emotion EEG Dataset (SEED) to appraise the feasibility and effectiveness of the proposed algorithm. Finally, experimental results display that the 3DCANN method has superior performance over the state-of-the-art models in EEG emotion recognition. |
WOS关键词 | FEATURE-EXTRACTION ; CLASSIFICATION |
资助项目 | National Natural Science Foundation of China[61572063] ; Natural Science Foundation of Hebei Province[F2020201025] ; Natural Science Foundation of Hebei Province[F2019201151] ; Science Research Project of Hebei Province[BJ2020030] ; Open Foundation of Guangdong Key Laboratory of Digital Signal and Image Processing[2020GDDSIPL-04] |
WOS研究方向 | Computer Science ; Mathematical & Computational Biology ; Medical Informatics |
语种 | 英语 |
WOS记录号 | WOS:000882005700010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Hebei Province ; Science Research Project of Hebei Province ; Open Foundation of Guangdong Key Laboratory of Digital Signal and Image Processing |
源URL | [http://ir.ia.ac.cn/handle/173211/51266] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
通讯作者 | Zhao, Ling; Zhang, Yu-Dong |
作者单位 | 1.Univ Leicester, Sch Informat, Leicester LE1 7RH, Leics, England 2.Chinese Peoples Liberat Army Gen Hosp, Beijing 100853, Peoples R China 3.PLA Med Coll, Dept Intervent Ultrasound, Beijing 100853, Peoples R China 4.Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China 5.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China 6.Hebei Univ, Coll Elect & Informat Engn, Machine Vis Engn Res Ctr Hebei Prov, Baoding 071002, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shuaiqi,Wang, Xu,Zhao, Ling,et al. 3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2022,26(11):5321-5331. |
APA | Liu, Shuaiqi.,Wang, Xu.,Zhao, Ling.,Li, Bing.,Hu, Weiming.,...&Zhang, Yu-Dong.(2022).3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,26(11),5321-5331. |
MLA | Liu, Shuaiqi,et al."3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 26.11(2022):5321-5331. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。