Large-Scale Semantic Scene Understanding with Cross-Correction Representation
文献类型:期刊论文
作者 | Zhao, Yuehua3; Zhang, Jiguang2![]() ![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2022-12-01 |
卷号 | 14期号:23页码:15 |
关键词 | point cloud large-scale semantic segmentation spatial geometric semantic context cross-correction |
DOI | 10.3390/rs14236022 |
通讯作者 | Ma, Jie(jma@hebut.edu.cn) ; Xu, Shibiao(shibiaoxu@bupt.edu.cn) |
英文摘要 | Real-time large-scale point cloud segmentation is an important but challenging task for practical applications such as remote sensing and robotics. Existing real-time methods have achieved acceptable performance by aggregating local information. However, most of them only exploit local spatial geometric or semantic information dependently, few considering the complementarity of both. In this paper, we propose a model named Spatial-Semantic Incorporation Network (SSI-Net) for real-time large-scale point cloud segmentation. A Spatial-Semantic Cross-correction (SSC) module is introduced in SSI-Net as a basic unit. High-quality contextual features can be learned through SSC by correcting and updating high-level semantic information using spatial geometric cues and vice versa. Adopting the plug-and-play SSC module, we design SSI-Net as an encoder-decoder architecture. To ensure efficiency, it also adopts a random sample-based hierarchical network structure. Extensive experiments on several prevalent indoor and outdoor datasets for point cloud semantic segmentation demonstrate that the proposed approach can achieve state-of-the-art performance. |
WOS关键词 | POINT ; SEGMENTATION ; NETWORKS |
资助项目 | Hebei Natural Science Foundation[F2020202045] ; National Natural Science Foundation of China[U21A20515] ; National Natural Science Foundation of China[62271074] ; National Natural Science Foundation of China[61972459] ; National Natural Science Foundation of China[61971418] ; National Natural Science Foundation of China[U2003109] ; National Natural Science Foundation of China[62171321] ; National Natural Science Foundation of China[62071157] ; National Natural Science Foundation of China[62162044] ; National Natural Science Foundation of China[32271983] ; Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences[LSU-KFJJ-2021-05] ; Open Projects Program of National Laboratory of Pattern Recognition |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000897456900001 |
出版者 | MDPI |
资助机构 | Hebei Natural Science Foundation ; National Natural Science Foundation of China ; Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences ; Open Projects Program of National Laboratory of Pattern Recognition |
源URL | [http://ir.ia.ac.cn/handle/173211/51308] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Ma, Jie; Xu, Shibiao |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing 100090, Peoples R China 3.Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Yuehua,Zhang, Jiguang,Ma, Jie,et al. Large-Scale Semantic Scene Understanding with Cross-Correction Representation[J]. REMOTE SENSING,2022,14(23):15. |
APA | Zhao, Yuehua,Zhang, Jiguang,Ma, Jie,&Xu, Shibiao.(2022).Large-Scale Semantic Scene Understanding with Cross-Correction Representation.REMOTE SENSING,14(23),15. |
MLA | Zhao, Yuehua,et al."Large-Scale Semantic Scene Understanding with Cross-Correction Representation".REMOTE SENSING 14.23(2022):15. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。