中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deeply Explain CNN Via Hierarchical Decomposition

文献类型:期刊论文

作者Cheng, Ming-Ming3; Jiang, Peng-Tao3; Han, Ling-Hao3; Wang, Liang2; Torr, Philip1
刊名INTERNATIONAL JOURNAL OF COMPUTER VISION
出版日期2023-01-11
页码15
关键词Explaining CNNs Hierarchical decomposition
ISSN号0920-5691
DOI10.1007/s11263-022-01746-x
通讯作者Cheng, Ming-Ming(cmm@nankai.edu.cn)
英文摘要In computer vision, some attribution methods for explaining CNNs attempt to study how the intermediate features affect network prediction. However, they usually ignore the feature hierarchies among the intermediate features. This paper introduces a hierarchical decomposition framework to explain CNN's decision-making process in a top-down manner. Specifically, we propose a gradient-based activation propagation (gAP) module that can decompose any intermediate CNN decision to its lower layers and find the supporting features. Then we utilize the gAP module to iteratively decompose the network decision to the supporting evidence from different CNN layers. The proposed framework can generate a deep hierarchy of strongly associated supporting evidence for the network decision, which provides insight into the decision-making process. Moreover, gAP is effort-free for understanding CNN-based models without network architecture modification and extra training processes. Experiments show the effectiveness of the proposed method. The data and source code will be publicly available at https://mmcheng.net/hdecomp/.
资助项目Major Project for New Generation of AI ; NSFC ; Fundamental Research Funds for the Central Universities (Nankai University) ; [2018AAA0100400] ; [61922046] ; [63223050]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000919320600002
出版者SPRINGER
资助机构Major Project for New Generation of AI ; NSFC ; Fundamental Research Funds for the Central Universities (Nankai University)
源URL[http://ir.ia.ac.cn/handle/173211/51350]  
专题多模态人工智能系统全国重点实验室
通讯作者Cheng, Ming-Ming
作者单位1.Univ Oxford, Oxford, England
2.NLPR, Beijing, Peoples R China
3.Nankai Univ, TMCC, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Ming-Ming,Jiang, Peng-Tao,Han, Ling-Hao,et al. Deeply Explain CNN Via Hierarchical Decomposition[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2023:15.
APA Cheng, Ming-Ming,Jiang, Peng-Tao,Han, Ling-Hao,Wang, Liang,&Torr, Philip.(2023).Deeply Explain CNN Via Hierarchical Decomposition.INTERNATIONAL JOURNAL OF COMPUTER VISION,15.
MLA Cheng, Ming-Ming,et al."Deeply Explain CNN Via Hierarchical Decomposition".INTERNATIONAL JOURNAL OF COMPUTER VISION (2023):15.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。