Future trajectory of respiratory infections following the COVID-19 pandemic in Hong Kong
文献类型:期刊论文
作者 | Cheng, Weibin7,8; Zhou, Hanchu6,7; Ye, Yang7; Chen, Yifan7; Jing, Fengshi5; Cao, Zhidong3,4![]() ![]() |
刊名 | CHAOS
![]() |
出版日期 | 2023 |
卷号 | 33期号:1页码:8 |
ISSN号 | 1054-1500 |
DOI | 10.1063/5.0123870 |
通讯作者 | Zeng, Daniel Dajun(dajun.zeng@ia.ac.cn) ; Zhang, Qingpeng(qingpeng.zhang@cityu.edu.hk) |
英文摘要 | The accumulation of susceptible populations for respiratory infectious diseases (RIDs) when COVID-19-targeted non-pharmaceutical interventions (NPIs) were in place might pose a greater risk of future RID outbreaks. We examined the timing and magnitude of RID resurgence after lifting COVID-19-targeted NPIs and assessed the burdens on the health system. We proposed the Threshold-based Control Method (TCM) to identify data-driven solutions to maintain the resilience of the health system by re-introducing NPIs when the number of severe infections reaches a threshold. There will be outbreaks of all RIDs with staggered peak times after lifting COVID-19-targeted NPIs. Such a large-scale resurgence of RID patients will impose a significant risk of overwhelming the health system. With a strict NPI strategy, a TCM-initiated threshold of 600 severe infections can ensure a sufficient supply of hospital beds for all hospitalized severely infected patients. The proposed TCM identifies effective dynamic NPIs, which facilitate future NPI relaxation policymaking. |
WOS关键词 | PNEUMONIA REQUIRING HOSPITALIZATION ; CORONAVIRUS DISEASE 2019 ; NONPHARMACEUTICAL INTERVENTIONS ; SYNCYTIAL VIRUS ; INFLUENZA ; IMPACT ; DYNAMICS |
资助项目 | Research Grants Council of the Hong Kong Special Administrative Region, China[11218221] ; Research Grants Council of the Hong Kong Special Administrative Region, China[C7154-20GF] ; Research Grants Council of the Hong Kong Special Administrative Region, China[C7151-20GF] ; Research Grants Council of the Hong Kong Special Administrative Region, China[C1143-20GF] |
WOS研究方向 | Mathematics ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000917936100004 |
出版者 | AIP Publishing |
资助机构 | Research Grants Council of the Hong Kong Special Administrative Region, China |
源URL | [http://ir.ia.ac.cn/handle/173211/51431] ![]() |
专题 | 舆论大数据科学与技术应用联合实验室 |
通讯作者 | Zeng, Daniel Dajun; Zhang, Qingpeng |
作者单位 | 1.Univ Hong Kong, LKS Fac Med, Dept Pharmacol & Pharm, Hong Kong 999077, Peoples R China 2.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 5.Univ North Carolina Chapel Hill, Sch Med, UNC Project China, UNC Global, Chapel Hill, NC 27599 USA 6.Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Peoples R China 7.City Univ Hong Kong, Sch Data Sci, Hong Kong 999077, Peoples R China 8.Guangdong Second Prov Gen Hosp, Inst Healthcare Artificial Intelligence Applicat, Guangzhou 510317, Peoples R China |
推荐引用方式 GB/T 7714 | Cheng, Weibin,Zhou, Hanchu,Ye, Yang,et al. Future trajectory of respiratory infections following the COVID-19 pandemic in Hong Kong[J]. CHAOS,2023,33(1):8. |
APA | Cheng, Weibin.,Zhou, Hanchu.,Ye, Yang.,Chen, Yifan.,Jing, Fengshi.,...&Zhang, Qingpeng.(2023).Future trajectory of respiratory infections following the COVID-19 pandemic in Hong Kong.CHAOS,33(1),8. |
MLA | Cheng, Weibin,et al."Future trajectory of respiratory infections following the COVID-19 pandemic in Hong Kong".CHAOS 33.1(2023):8. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。